
Exceptional service in the national interest

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Building Automated Proofs of
Refinement Between State
Machines and C

Samuel D. Pollard, Sandia National Labs

SAND2024-07142C

Frama-C Days

Maison de la Radio et de la Musique, Paris

14 June 2024, 11:30

Overview

2

• Sandia National Labs is a US
government research &
development center

• Sandia develops software
for high-consequence
embedded control systems

Livermore, California site

Overview

3

• The systems are relatively simple
• The cost for error is very high
• Requirements relatively complex
• A good use case for formal

methods

https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors

Design Features of High Consequence Systems (HCS)

4

• Asynchronous interacting
components
• e.g., across a bus

• Requirements documents in
English and informal diagrams

• Software implemented in C

From these, we require proofs of system-level properties

Introducing Q Framework

5

• Began in 2017
• Verify systems developed using model-

based system design (MBSD)
• Leverage solvers for automation
• NuSMV for LTL/CTL
• Frama-C

• Currently has ~6 developers
• Part of a broader research group
• hardware and software understanding
• modeling, simulation, formal methods

• v1 in OCaml, v2 Haskell

System-Level Refinement

6

High-Level Requirements

(written document)

Low-Level Requirements

(written document)

Software

(C code)

derive

implement

High-Level State Machine

(QSpec model)

Low-Level State Machine

(QSpec model)

High-Level Properties

(QSpec assertions)

Low-Level Properties

(QSpec assertions)

formalize

formalize

check

check

refine

Loop-Free State Machines

(QSpec models)

Annotated Software

(C code + comments)

formalize
0 refine

0

refine
00

Modeling a Simple Clock

7

TOP_LEVEL

(qontext
(variable
(id h)
(domain
(range 0 23))

(intent register))
(variable
(id tick)
(domain boolean)
(intent input)))

Clock

H

(actions
(= h' 0))

(guards tick)
(actions
(=
h'
(ite
(= h 23)
0
(+ h 1))))

TOP_LEVEL

(qontext
(variable
(id h)
(domain
(range 1 12))

(intent register))
(variable
(id m)
(domain
(range 0 59))

(intent register))
(variable
(id tick)
(domain boolean)
(intent input)))

Clock

HM

(actions
(/\
(= h' 12)
(= m' 0)))

(guards
tick
(= m 59))

(actions
(=
h'
(ite
(= h 12)
1
(+ h 1)))

(= m' 0))

(guards
tick
(> 59 m))

(actions
(=
m'
(+ m 1)))

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

Frama-C
(+ provers)

Annot.
C NuSMV

Proof? SAT?

obeys style

*.h

Architecture of Q Framework

8

• Blue text: Sandia developed
• Double-struck: Written or

checked by hand

Stateflow

9

Convert Stateflow to QSpec

10

• MATLAB App to
generate SC-XML

• MATLAB expression
parser

• Convenient UI for
testing

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

Frama-C
(+ provers)

Annot.
C NuSMV

Proof? SAT?

obeys style

*.h

QSpec

11

• Based on
SCXML

Preliminaries

12

• A labeled transition system (LTS) is a triple
(S, O, →)

 states, observations (labels), transition relation
• We are building a refinement between two LTSes

PC ≼weak Q
• PC is a C program
• Q is a QSpec

• Provided we can think of a C program as an LTS

Preliminaries

13

To define refinement, we first define partial correctness:

WP’s Hoare logic and predicate transformer semantics ⟦⋅⟧
• But for Labeled Transition Systems, correctness is

stuttering-invariant trace equivalence.

Comparing an LTS with C

14

• Strict refinement too strong
• Consider

{𝑝}𝑓{𝑞}

• Frama-C cannot describe intermediate states
• Gives us modularity, but not observational refinement

Observable Events in C

15

• We require observational refinement
• We borrow CompCert’s notion
• externally-visible reads and writes

• Nontermination not included here
• Design requirement
• infinite event loop with handler
• handlers are loop free

struct machine;
while(true) {
 msg = read_msg();
 if (msg == A)
 handle_A(&m);
 else
 handle_other(&m);
}

Weak Simulation

16

• So, we map observables into transitions in the LTS:

• 𝜏 is the silent transition
• S the set of states
• 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄
• O an observable (Label in typical LTL notation)

Handling Volatile Reads and Writes

17

• Require any access
wrapped in a function call

• Axiomatize hardware
access

• Use ghost state

18

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

29

19

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Observables in the LTS Q

29

20

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Transition
relation of Q

29

21

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Relations over
states in Q

29

22

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Frama-C @ghost

29

23

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

C program state
transformer semantics

29

24

Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ]

!Q

'̂[RSQ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Relations over
C program state

29

Refinement

25

• Above:
Composition of
the model with an
LTS with a single
state 1

• Below:
Composition in
the C program
with an
environment for
volatiles

Example: Loop Free Machine

26

• Pragmas to link C
with State Machine
(Simulation Map)

Loop Free Machine

27

Generated ACSL

28

Voilà, the Trace Back-End

29

• Key idea
• Enumerate all paths from initial state to terminals
• Update ghost state, track all guards and actions along each path
• Provided simulation map, this proves that C refines LTS

• Some Notes
• Simulation Map can get complex; extra logic for:
• handling nondeterminism (e.g., messages)
• WP tactics
• additional requires/ensures, error states,
• Even so, most effort goes into generating & interpreting WP

Challenges

30

• Memory model
• e.g., unions, bit-level operations
• Granularity of assigns statements

• Counterexample generation
• Floating-point support is limited
• Scale: interpretating results from

autogenerated proof obligations

Future Work

31

• Open Source: currently in the process
• Formalization in Coq
• Some parts are proven in Coq
• Want a formal proof of refinement
• Composition: have parallel async, want nested composition

• Extend Hoare logic to better handle LTS to C refinement
• Check https://proof.sandia.gov/ for updates
• Thank you!

https://proof.sandia.gov/

