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Overview
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• Sandia National Labs is a US 
government research & 
development center

• Sandia develops software 
for high-consequence 
embedded control systems

Livermore, California site



Overview
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• The systems are relatively simple
• The cost for error is very high
• Requirements relatively complex
• A good use case for formal 

methods

https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors



Design Features of High Consequence Systems (HCS)
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• Asynchronous interacting 
components
• e.g., across a bus

• Requirements documents in 
English and informal diagrams

• Software implemented in C

From these, we require proofs of system-level properties



Introducing Q Framework
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• Began in 2017
• Verify systems developed using model-

based system design (MBSD)
• Leverage solvers for automation
• NuSMV for LTL/CTL
• Frama-C

• Currently has ~6 developers
• Part of a broader research group
• hardware and software understanding
• modeling, simulation, formal methods

• v1 in OCaml, v2 Haskell



System-Level Refinement
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High-Level Requirements

(written document)

Low-Level Requirements

(written document)

Software

(C code)

derive

implement

High-Level State Machine

(QSpec model)

Low-Level State Machine

(QSpec model)

High-Level Properties

(QSpec assertions)

Low-Level Properties

(QSpec assertions)

formalize

formalize

check

check

refine

Loop-Free State Machines

(QSpec models)

Annotated Software

(C code + comments)

formalize
0 refine

0

refine
00



Modeling a Simple Clock
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TOP_LEVEL

(qontext
(variable
(id h)
(domain
(range 0 23))

(intent register))
(variable
(id tick)
(domain boolean)
(intent input)))

Clock

H

(actions
(= h' 0))

(guards tick)
(actions
(=
h'
(ite
(= h 23)
0
(+ h 1))))

TOP_LEVEL

(qontext
(variable
(id h)
(domain
(range 1 12))

(intent register))
(variable
(id m)
(domain
(range 0 59))

(intent register))
(variable
(id tick)
(domain boolean)
(intent input)))

Clock

HM

(actions
(/\
(= h' 12)
(= m' 0)))

(guards
tick
(= m 59))

(actions
(=
h'
(ite
(= h 12)
1
(+ h 1)))

(= m' 0))

(guards
tick
(> 59 m))

(actions
(=
m'
(+ m 1)))



Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

Frama-C
(+ provers)

Annot.
C NuSMV

Proof? SAT?

obeys style

*.h

Architecture of Q Framework
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• Blue text: Sandia developed
• Double-struck: Written or 

checked by hand



Stateflow
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Convert Stateflow to QSpec
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• MATLAB App to 
generate SC-XML

• MATLAB expression 
parser

• Convenient UI for 
testing

Stateflow
Models

LTL, CTL
Properties

C Source

QSpeckler

Stateflow
Test Case

QSpec

QLang

Counter-
example

ACSL

SMV

Frama-C
(+ provers)

Annot.
C NuSMV

Proof? SAT?

obeys style

*.h



QSpec
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• Based on
SCXML



Preliminaries

12

• A labeled transition system (LTS) is a triple
(S, O, →)

 states, observations (labels), transition relation
• We are building a refinement between two LTSes

PC ≼weak Q
• PC is a C program
• Q is a QSpec

• Provided we can think of a C program as an LTS



Preliminaries
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To define refinement, we first define partial correctness:

WP’s Hoare logic and predicate transformer semantics ⟦⋅⟧
• But for Labeled Transition Systems, correctness is

stuttering-invariant trace equivalence.



Comparing an LTS with C
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• Strict refinement too strong
• Consider

{𝑝}𝑓{𝑞}

• Frama-C cannot describe intermediate states
• Gives us modularity, but not observational refinement



Observable Events in C
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• We require observational refinement
• We borrow CompCert’s notion
• externally-visible reads and writes

• Nontermination not included here
• Design requirement
• infinite event loop with handler
• handlers are loop free

struct machine;
while(true) {
  msg = read_msg();
  if (msg == A)
    handle_A(&m);
  else
    handle_other(&m);
}



Weak Simulation
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• So, we map observables into transitions in the LTS:

• 𝜏 is the silent transition
• S the set of states
• 𝑅 ⊆ 𝑆𝑃 × 𝑆𝑄 
• O an observable (Label in typical LTL notation)



Handling Volatile Reads and Writes
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• Require any access 
wrapped in a function call

• Axiomatize hardware 
access

• Use ghost state
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Observables in the LTS Q

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Transition
relation of Q

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Relations over
states in Q

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Frama-C @ghost

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

C program state
transformer semantics

29
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Weak Simulation

OQ P(SQ ⇥ SQ)

P(GhostState) P(ProgState⇥ ProgState)

'̂[ROQ ]

!Q

'̂[RSQ ]✓

!PC

Q is the abstract model (QSpec)
PC is the concrete implementation (C program)
'̂ is a JSON file relating Stateflow variables to predicates over C variables.
!Q is a Galois connection between OQ and P(SQ ⇥ SQ)

This demonstrates a proof of weak simulation, provided we can think of PC as a
transition system: this is not trivial when considering C semantics

Relations over
C program state

29



Refinement
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• Above: 
Composition of 
the model with an 
LTS with a single 
state 1

• Below: 
Composition in 
the C program 
with an 
environment for 
volatiles 



Example: Loop Free Machine
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• Pragmas to link C 
with State Machine
(Simulation Map)



Loop Free Machine
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Generated ACSL
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Voilà, the Trace Back-End
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• Key idea
• Enumerate all paths from initial state to terminals
• Update ghost state, track all guards and actions along each path
• Provided simulation map, this proves that C refines LTS

• Some Notes
• Simulation Map can get complex; extra logic for:
• handling nondeterminism (e.g., messages)
• WP tactics
• additional requires/ensures, error states, 
• Even so, most effort goes into generating & interpreting WP



Challenges
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• Memory model
• e.g., unions, bit-level operations
• Granularity of assigns statements

• Counterexample generation
• Floating-point support is limited
• Scale: interpretating results from 

autogenerated proof obligations



Future Work
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• Open Source: currently in the process
• Formalization in Coq
• Some parts are proven in Coq
• Want a formal proof of refinement
• Composition: have parallel async, want nested composition

• Extend Hoare logic to better handle LTS to C refinement
• Check https://proof.sandia.gov/ for updates
• Thank you!

https://proof.sandia.gov/

