Numerical filter code analysis
Frama-C Days 2024

Franck Vedrine ! Pierre-Yves Piriou 2  Vincent David 3

1CEA - List - LSL
2EDF Lab Chatou - PRISME - P11

3IRSN

14/06/24

[ J
& TeDF

1/32



© Context

© 1% order filter
© filter with real eigenvalues
@ filter with complex eigenvalues

© Conclusion

q
S €DF

2/32



Context
[ Jelelele}

Plan

© Context

<senF

3/32



Context
[¢] le]e]e}

Numerical filter

o A (discrete-time) signal x : Z — R maps discrete times to real
values.

o A filter /7 : (Z — R) — (Z — R) maps an input signal v into an
output signal y (or vector of signals).

u(k) 7 y(k)

o We restrict here to Linear Time Invariant (LTI) filters of finite
order n. lts canonical form is a constant-coefficient difference

equation.

y(k) = Z biu(k — i) — Z aiy(k —1i)

where {aj}1<j<n and {b;}o<i<, are constant real coefficients.
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EDF context

Qualification of critical control systems for nuclear power plant

We must verify the absence of RTE (RunTime Error)

In particular, the absence of numerical overflows

A control program classically starts with the filtering of sensor signals
So the proven filter bounds should be as accurate as possible!

Toy example :

y = filter (input) ;
//@ assert y <= 4[9.9 ;
output = 1.0 / (50.0 - y) ;

<senF
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State of the art

More than two decades of effort by the abstract interpretation
community, that produced a number of tuned relational numerical
abstract domains, implemented in Astree or Polyspace:

o Ellipsoids [2, 3, 10]

e Zonotopes [1]

o Set of invariants (Boxes, zonotopes, polyhedra...) [7, 9]

None of them are currently mature in Frama-C

Current approch:

© Pre-compute the invariant once and for all outside Frama-C
© Import the invariant as an ACSL annotation
© Check the invariant within Frama-C (Eva or Wp )

By the way: recent breakthrough in the arithmetic community [5]

<senF
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Bounding filter output

Worst-Case Peak-Gain (WCPG) Theorem

172 (1) lloo < [INl1-[|u]loo

where h = J#(0) is the impulse response of the filter (J is the impulse
signal: 6(0) =1 and Vk # 0,d(k) = 0).
o ||h||; is called the Worst-Case Peak-Gain (WCPG) and can be
correctly computed [12].

@ This bound is optimal and reachable [4].

@ To take into account encoding error,
we must introduce two additional error w |
filters: J#A (coefficient quantization)
and 72" (roundoff error), where ¢ is
the error signal depending on the
implementation details (algorithm,
machine arithmetic...) [5].
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Warmup

Example of 1% order filter
Vk u(k) € [-10, 10]
Vk <0 y(k)=0
Vk >0 y(k)=009y(k—1)+ 0.5u(k)

h(k) = 0.5 % 0.9%
1

1209 °

— |h|: = 0.55020.9" =05

— lylle < 5llulc = 50

@ 1% order filters can be abstracted in interval domain:
0.9 * [~50,50] + 0.5  [~10, 10] = [~50, 50]
@ This is also correct in floating point arithmetic ! Saeor
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Demo 1

double outl;
const double kil[]
const double kol[]
int main() {
double in=0, out=0;
//@ widen_hints out, -50.0, 50.0;
while (Frama_C_interval(0, 1)) {

outl = out;
in = Frama_C_double_interval(-10.0, +10.0);
out = -ko[1]l*outl + ki[0]l*in;

}
}

The command
$ frama-c -eva filterl.c
produces the following output:

[eva] ====== VALUES COMPUTED ======
[eva:final-states] Values at end of function main:
y € [-50. .. 50.] :':eDF
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Increasing the complexity

Example of 2" order filter with real eigenvalues
Vk u(k) € [-10,10]
Vk <0 y(k)=0
Vk>0 y(k)=y(k—1)—02x%y(k—2)+0.1x*u(k)

The characteristic polynom is p(A) = A> + X\ — 0.2. We can check that

its discriminant is A = 0.2 and so its eigenvalues are real:
A1 =~ 0.27639320225
A2 =~ 0.72360679775

e WCPG theorem application!: ||y|/oc < 0.5 % |[ul|oc =5

@ Interval domain does not help anymore !

[-5,5] — 0.2 % [-5,5] + 0.1 % [~10, 10] = [~8.5,8.5] Z [5, 5]

<senF
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Wp comes to rescue

Linear decomposition theorem

A filter of order n having only real eigenvalues can be decomposed into a
linear combination of n filters of order 1.

- )\1.61 + )\2.6‘2
RSP
with

e1(k) Ar.ei(k —1)+0.1 % u(k)
eg(k) = )\2.62(/( — 1) —0.1x U(k)

@ We can implement this implementation as ghost code and prove it
with Wp and external solvers.

@ Eva finish the proof to bound e;, e; and then y.

o Limitation: the Wp proof rely on the real model !

@ Perspective: use an external mechanized filter theory (like in [4]) to ,
bound the floating-point error and import the proof in Wp . ¥ eoF
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The command

$ frama-c -wp -wp-prover altergo,z3 -wp-model real
filter2-fc.c -then -eva filter2-fc.c
produces the following output:

[wp] Proved goals: 17 / 18

Qed: 13 (4ms-25ms-52ms)

Alt-Ergo 2.3.3: 2 (164ms-176ms) (127) (interrupted: 1)

Z3 4.8.6: 2 (50ms-410ms) (1076863) (interrupted: 1)
[eva] ====== VALUES COMPUTED ======

[eva:final-states] Values at end of function main:
el € [-1.38196601125 .. 1.38196601125]
e2 € [-3.61803398875 .. 3.61803398875]
y € [-6.7082039325 .. 6.7082039325]
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Serious business

Example of 2" order filter with complex eigenvalues

Vk u(k) € [-10,10]
Yk <0 y(k)=0
Vk>0 y(k)=15x%y(k—1)—0.75%y(k —2)+ 0.5 % u(k)

@ We can check that A = -0.75< 0
o WCPG theorem application: ||y|/co < 4.91892| /o = 49.1892
@ For this kind of filter, we have to generate relational invariants:
o ellipsoid
o set of boxes
@ zonotope
o fractal zonotope
<seoF
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Ellipsoid

o Idea: Find an invariant of the form [3, 10]:

y(k)?+axy(k—1)2+bxy(k)xy(k—1)+cxy(k)+dxy(k—1) <e

o Invariant found for our toy example:
y(k)> +0.75 % y(k — 1) — 1.5 % y(k) * y(k — 1) < 1239.81

o Advantages: short, readable and verifiable by hand invariant

e Drawbacks:
o Invariant verification with Wp is hard [8]
o rely on an external polynomial solver
e don't work if the norm of the complex eigenvalues are too close to 1
o worst accuracy —» |y (k)| < 81.3162 (recall: ||y||oc = 49.1892)

<senF
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Set of boxes

o Idea: state partitioning abstraction to compute an invariant of kind
disjunction of intervals [9]
o Divide and conquer (split the input and state intervals in many
chunks)
o The trick comes from constraint programming research field
o Advantages:
o fully automatic: no need for a priori knowledge
o verifiable with Eva within interval domain — natively valid in
floating-point arithmetic
e Drawbacks:
o bad performance — generation : 4s , verification : 62s
o better but still bad accuracy — |y (k)| < 65 (recall:
llylloc = 49.1892)

<senF
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Zonotope

e Idea: Find an invariant in an affine form [1]:

n N

/\ y(k) € ako + Zak,i * Ej

k=0 i=1

where Vi, e; € [—1, 1] are shared noise symbols
e at each iteration, instead of applying classic widening, we introduce a
symbolic perturbation over the affine equations, until a post-fixpoint
is reached.
e Advantages:
e good accuracy — |y (k)| < 50.32 (recall: ||ly|lcc = 49.1892)
o relatively basic reasoning to prove the invariant (linear simplification
+ interval arithmetic)
e Drawbacks:
o rely on external complex algorithms and heuristics (Fourier-Motzkin,
Simplex) -
o don't work if the norm of the complex eigenvalues are too close to 1%~ €DF
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Fractal zonotope

o Idea: expliciting the raw relation between y and u, through the
impulse response h:

o Remark: the impulse response h is an inductive sequence
o the associated invariant is a fractal zonotope (a kind of "zonotope
with infinite vertices").

o Advantages:

o find the optimal bound

e work in the general case

o the invariant is automatically computed, without hints
o Drawbacks:

e cannot be automatically verified within Frama-C yet (soon within the
Numerors plugin [6]) <'sepr
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Fractal zonotope (cont.)
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Summary
ellipsoid | set of boxes | zonotope | fractal zonotope
accuracy? worst bad optimal
standalone b 4 4 b 4 v
robustness X v
by-hand proof 4 b 4 v
automatic proof (Wp) v/(Eva) (soon)
float semantic v (soon)

<senF

2Every method is accurate enough to prove that the filter itself does not overflow
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Take away

o Control program starts by filter —> need for accurate analysis!

o Arithmeticians are tackling the challenge to design
correct-by-construction filters (WCPG theorem + sound error
analysis) [5, 4, 12] — reached for fixed-point implementations

@ Eva can prove 1% order filter optimal bounds

@ For higher order filter, arbitrary accurate bounds can be
automatically obtained within Frama-C using subdivision
techniques...but it’s costly!

o work-in-progress: implementing the fractal zonotope in
Frama-C to infer automatically and efficiently optimal bounds.

@ more details on the Frama-C book's chapter 12 and the companion
document [11]

<seoF
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o Merge effort from arithmetic and abstract interpretation
communities.

o Filter detection: manage the diversity of implementations

@ Next challenge: mutable filter

int

}
}

main() {

double y, y1, y2, u=0;
while (Frama_C_interval(0, 1)) {

u = Frama_C_double_interval (IN_MIN, IN_MAX);

fast_convergence = Frama_C_interval(O,
y2 = yi;
yi =vy;

if (fast_convergence) {
y = all *x y1 + bll *x u ;
¥
else {
y = a2l * yl + a22 *x y2 + b21 * u ;
}

1),

<senF
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Optimal zonotope construction for the toy example

In our toy example, we have:

h(0) = 0.5
h(1) = 0.75
Vk h(k)=15%h(k—1)—0.75 % h(k — 2)

We can check that h is pseudo-periodic, so the optimal invariant is a

classic 12-faces zonotope, described by the following formula (see [11] for
details):

212 k=0 1
11 -
[l V3 T
-1 K
y(k—=1) € 1_231521(2:0 5 cos(2 k6)5k

where Vk € [0,11], ¢4 € [-1,1]. <~epF
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Graphical construction of the zonotope

k
lulle <X (V3 L
—ae 25 ) ooz k)=

) E =€ =6 =g =g =g =+
€= € =€ == €y =8, = -1
+(49.19, 49.19)
> y(k-1)
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

212 k=0 .
11 -1
u 3
y(k—1) € I H: <£) cos <g ka> £k
1-25 i\ 2 6
4 vk €T E =€ =6 7€, =6 =+1

80=£7=£B=£9=£10=811=_1

g+ -1 (49.19, 49.19)
g -1 —» +1
x+=0

(49.19, 31.89)
y+=-17.30

» y(k-1)
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

212 k=0 .
11 -1
3
yh-p e Ll <£) cos(E _ kE) -
1- 35 i 2 2 6
4 vk €= =6 =€67¢, =6 =+1
80281:8828928102811:_1
g+l - -1
-1 - +1
X +=-17.30 (49.19, 31.89)
y +=-25.95

(31.89, 5.95)
> y(k-1

<seoF
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

212 k=0

k—1
llulloo (V3 7" 7T
y(k—1) € T - cos | o = kg €k

212 k=0

A
y(k) €T €& =€ =E,7E, =6 = +1
50251252=£9=$m:£11:‘1

e +1 o -1
g -1 - +1
x +=-25.95
y +=-25.95

(31.89, 5.95)
> y(k-1

-1)
4.20.00)
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

— 212 k=0 .
11 -1
3
yh-p e Ll <£) o (E _ kE) -
1- 35 5\ 2 2 6
4 vk €T =€ TE =€, =€ = +1
€ =€ =€6=6=¢€,=¢,=-1
» y(k-1)
(5.95, -20.00)
/ gy 1 - -1
(-20.00, -39.46) €5 -1 - +1
x +=-25.95 ¢
y +=-19.46 S €DF
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

212 k=0 .
11 —1
u 3
yh-p e Ll <£) (z _ kz) -
1- 35 i 2 2 6
A vk €€, = 8y = = £,y = £ = +1
=€ =€6=¢6=¢g=¢,=-1
> y(k-1)
g1 o -1
(-20.00, -39.46) £, -1 - +1
X +=-19.46 P
y +=-9.73 S €DF

(-39.46, 49.19)

28 /32



Conclusion
[e]e]e]e]e] lelele]e]

Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 36 5 cos §7k€ =

1- 37 ko

k—1
llulloo (V3 7" 7T
y(k—1) € 13 - cos | o = kg ek

212 k=0

A
y(k) € =€ T €T 6= €= €y = +1

> y(k-1)
g +1 - -1
€4-1 - +1
x+=-9.73 ¢
S €DF

y+=0
(-49.19, -49.19) (-39.46, 49.19)
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Graphical construction of the zonotope

K
lule & (V3 x
y(k) € 1 38 5 cos §7k€ =

— 202 k=0 .
11 -1
3
y(k—1) € HUHOQG £ cos <E 7kz> ek
1- %5 s 2 2 6
y(k)

y(k-1)
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