(Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
	00000				

Numerical filter code analysis Frama-C Days 2024

Franck Vedrine ¹ <u>Pierre-Yves Piriou</u> ² Vincent David ³

¹CEA - List - LSL

²EDF Lab Chatou - PRISME - P11

³IRSN

14/06/24

1 / 32

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	00000000	0000000000
Plan				

1 Context

- (2) 1st order filter
- ilter with real eigenvalues
- ④ filter with complex eigenvalues

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Plan				

1 Context

- 2 1st order filter
- ③ filter with real eigenvalues
- ④ filter with complex eigenvalues
- **5** Conclusion

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Numei	rical filter			

- A (discrete-time) signal x : Z → R maps discrete times to real values.
- A filter ℋ: (Z → R) → (Z → R) maps an input signal u into an output signal y (or vector of signals).

$$\stackrel{u(k)}{\longrightarrow} \stackrel{y(k)}{\mathcal{H}} \xrightarrow{}$$

• We restrict here to Linear Time Invariant (LTI) filters of finite order *n*. Its canonical form is a constant-coefficient difference equation.

LTI filter

$$y(k) = \sum_{i=0}^{n} b_i . u(k-i) - \sum_{i=1}^{n} a_i . y(k-i)$$

where $\{a_i\}_{1 \le i \le n}$ and $\{b_i\}_{0 \le i \le n}$ are constant real coefficients.

イロン イヨン イヨン イヨン

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00●00	000	0000	00000000	0000000000
EDF c	ontext			

- Qualification of critical control systems for nuclear power plant
- We must verify the absence of RTE (*RunTime Error*)
- In particular, the absence of numerical overflows
- A control program classically starts with the filtering of sensor signals

<ロ> (四) (四) (三) (三) (三)

5 / 32

- So the proven filter bounds should be as accurate as possible!
- Toy example :

```
y = filter(input);
//@ assert y <= 49.9;
output = 1.0 / (50.0 - y);</pre>
```

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
000●0	000	0000	00000000	0000000000
State o	of the art			

- More than two decades of effort by the abstract interpretation community, that produced a number of tuned **relational numerical abstract domains**, implemented in Astree or Polyspace:
 - Ellipsoids [2, 3, 10]
 - Zonotopes [1]
 - Set of invariants (Boxes, zonotopes, polyhedra...) [7, 9]
- None of them are currently mature in Frama-C
- Current approch:
 - Pre-compute the invariant once and for all outside Frama-C
 - Import the invariant as an ACSL annotation
 - Oheck the invariant within Frama-C (Eva or Wp)
- By the way: recent breakthrough in the arithmetic community [5]

イロト イヨト イヨト イヨト 二日

6 / 32

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Bound	ling filter o	utput		

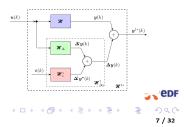
Worst-Case Peak-Gain (WCPG) Theorem

o

 $\|\mathscr{H}(u)\|_{\infty} \leq \|\mathbb{h}\|_{1}.\|u\|_{\infty}$

where $\mathbb{h} = \mathscr{H}(\delta)$ is the **impulse response** of the filter (δ is the impulse signal: $\delta(0) = 1$ and $\forall k \neq 0, \delta(k) = 0$).

- ||h||₁ is called the Worst-Case Peak-Gain (WCPG) and can be correctly computed [12].
- This bound is optimal and reachable [4].
- To take into account encoding error, we must introduce two additional error filters: ℋ_Δ (coefficient quantization) and ℋ_ε^{*} (roundoff error), where ε is the error signal depending on the implementation details (algorithm, machine arithmetic...) [5].



Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	•00	0000	0000000	0000000000
Plan				

1 Context

(2) 1st order filter

③ filter with real eigenvalues

In the second second

5 Conclusion

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Warm	up			

Example of 1st order filter

$$\left\{ egin{array}{ll} orall k & u(k) \in [-10,10] \ orall k < 0 & y(k) = 0 \ orall k \geq 0 & y(k) = 0.9y(k-1) + 0.5u(k) \end{array}
ight.$$

$$\begin{split} \mathbb{h}(k) &= 0.5 * 0.9^k \\ \implies & \|\mathbb{h}\|_1 = 0.5 \sum_{k=0}^{\infty} 0.9^k = 0.5 \frac{1}{1 - 0.9} = 5 \\ \implies & \|y\|_{\infty} \le 5 \|u\|_{\infty} = 50 \end{split}$$

 $\bullet \ 1^{st}$ order filters can be abstracted in interval domain:

$$0.9 * [-50, 50] + 0.5 * [-10, 10] = [-50, 50]$$

• This is also correct in floating point arithmetic !

+ロト + 伊ト + 王ト + 王 ・ 王 ・ の Q (* 9 / 32

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Demo	1			

```
double out1;
const double ki[] = \{0.5\};
const double ko[] = \{ 1.0, -0.9 \};
int main() {
  double in=0, out=0;
  //@ widen_hints out, -50.0, 50.0;
  while (Frama_C_interval(0, 1)) {
    out1 = out:
    in = Frama_C_double_interval(-10.0, +10.0);
    out = -ko[1]*out1 + ki[0]*in;
  }
The command
$ frama-c -eva filter1.c
produces the following output:
[eva] ===== VALUES COMPUTED ======
[eva:final-states] Values at end of function main:
  y \in [-50. .. 50.]
```

いい の一点 (点)(点)(日)(日)

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	●000	00000000	0000000000
Plan				

1 Context

- 2 1st order filter
- In the second second
- ④ filter with complex eigenvalues

5 Conclusion

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
		0000		
Increa	sing the co	mplexity		

Example of 2nd order filter with real eigenvalues

$$\begin{cases} \forall k & u(k) \in [-10, 10] \\ \forall k < 0 & y(k) = 0 \\ \forall k \ge 0 & y(k) = y(k-1) - 0.2 * y(k-2) + 0.1 * u(k) \end{cases}$$

The characteristic polynom is $p(\lambda) = \lambda^2 + \lambda - 0.2$. We can check that its discriminant is $\Delta = 0.2$ and so its eigenvalues are real:

- $\lambda_1 pprox 0.27639320225 \ \lambda_2 pprox 0.72360679775$
- WCPG theorem application¹: $\|y\|_{\infty} \leq 0.5 * \|u\|_{\infty} = 5$
- Interval domain does not help anymore !

$$[-5,5] - 0.2 \ast [-5,5] + 0.1 \ast [-10,10] = [-8.5,8.5] \not\subseteq [-5,5]$$

¹WCPG can be safely computed using https://github.com/fixif/WCPG <=>

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
		0000		
M/n co	mes to res			

Linear decomposition theorem

A filter of order n having only real eigenvalues can be decomposed into a linear combination of n filters of order 1.

$$y = \frac{\lambda_1 \cdot e_1 + \lambda_2 \cdot e_2}{\lambda_1 - \lambda_2}$$

with

$$\begin{cases} e_1(k) = \lambda_1 \cdot e_1(k-1) + 0.1 * u(k) \\ e_2(k) = \lambda_2 \cdot e_2(k-1) - 0.1 * u(k) \end{cases}$$

- We can implement this implementation as ghost code and prove it with Wp and external solvers.
- Eva finish the proof to bound e_1 , e_2 and then y.
- Limitation: the Wp proof rely on the real model !
- Perspective: use an external mechanized filter theory (like in [4]) to bound the floating-point error and import the proof in Wp .

Context	1 st order filter 000	filter with real eigenvalues ○○○●	filter with complex eigenvalues 00000000	Conclusion 0000000000
00000	000	0000	0000000	0000000000
Demo	2			

```
The command

$ frama-c -wp -wp-prover altergo,z3 -wp-model real

filter2-fc.c -then -eva filter2-fc.c

produces the following output:
```

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Plan				

1 Context

- 2 1st order filter
- ③ filter with real eigenvalues
- ④ filter with complex eigenvalues

5 Conclusion

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Seriou	e husinges			

Example of 2nd order filter with complex eigenvalues

$$\left\{ egin{array}{ll} orall k & u(k) \in [-10,10] \ orall k < 0 & y(k) = 0 \ orall k \geq 0 & y(k) = 1.5 * y(k-1) - 0.75 * y(k-2) + 0.5 * u(k) \end{array}
ight.$$

- We can check that $\Delta = -0.75 < 0$
- WCPG theorem application: $\|y\|_{\infty} \leq 4.91892 \|u\|_{\infty} = 49.1892$
- For this kind of filter, we have to generate relational invariants:

イロン イヨン イヨン イヨン

16/32

- ellipsoid
- ${\scriptstyle \bullet}$ set of boxes
- zonotope
- fractal zonotope

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	○○●○○○○○	0000000000
Ellipsoï	ď			

• Idea: Find an invariant of the form [3, 10]:

$$y(k)^{2} + a * y(k-1)^{2} + b * y(k) * y(k-1) + c * y(k) + d * y(k-1) \le e$$

• Invariant found for our toy example:

$$y(k)^{2} + 0.75 * y(k-1)^{2} - 1.5 * y(k) * y(k-1) \le 1239.81$$

- Advantages: short, readable and verifiable by hand invariant
- Drawbacks:
 - Invariant verification with Wp is hard [8]
 - rely on an external polynomial solver
 - don't work if the norm of the complex eigenvalues are too close to 1
 - worst accuracy $\longrightarrow |y(k)| \le 81.3162 \text{ (recall: } \|y\|_{\infty} = 49.1892 \text{)}$

くロト < 四ト < 至ト < 至ト < 至ト を のので 17/32

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	000●0000	0000000000
Set of	boxes			

- Idea: state partitioning abstraction to compute an invariant of kind disjunction of intervals [9]
 - Divide and conquer (split the input and state intervals in many chunks)
 - The trick comes from constraint programming research field
- Advantages:
 - fully automatic: no need for a priori knowledge
 - \bullet verifiable with Eva within interval domain \longrightarrow natively valid in floating-point arithmetic

18/32

• Drawbacks:

- $\bullet\,$ bad performance \longrightarrow generation : 4s , verification : 62s
- better but still bad accuracy $\longrightarrow |y(k)| \le 65$ (recall:
 - $||y||_{\infty} = 49.1892$

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Zonoto	ope			

• Idea: Find an invariant in an affine form [1]:

$$\bigwedge_{k=0}^{n} y(k) \in \alpha_{k,0} + \sum_{i=1}^{N} \alpha_{k,i} * \varepsilon_{i}$$

where $\forall i, \varepsilon_i \in [-1, 1]$ are shared **noise symbols**

• at each iteration, instead of applying classic widening, we introduce a symbolic perturbation over the affine equations, until a post-fixpoint is reached.

• Advantages:

- good accuracy $\longrightarrow |y(k)| \leq 50.32$ (recall: $\|y\|_{\infty} = 49.1892$)
- relatively basic reasoning to prove the invariant (linear simplification + interval arithmetic)

Drawbacks:

- rely on external complex algorithms and heuristics (Fourier-Motzkin, Simplex)
- ullet don't work if the norm of the complex eigenvalues are too close to 155 COF

イロト イヨト イヨト イヨト 三日

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues 00000000	Conclusion 0000000000
Fractal	zonotope			

• Idea: expliciting the raw relation between y and u, through the impulse response h:

$$y(k) = (\mathbb{h} * u)(k) = \sum_{i=0}^{k} \mathbb{h}(i).u(k-i)$$

- \bullet Remark: the impulse response \mathbbm{h} is an inductive sequence
- the associated invariant is a fractal zonotope (a kind of "zonotope with infinite vertices").

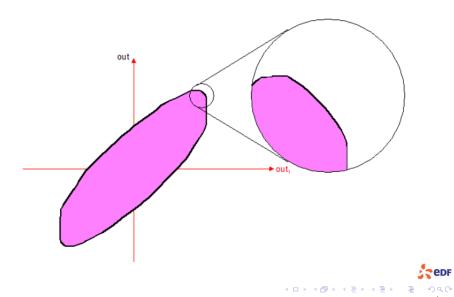
• Advantages:

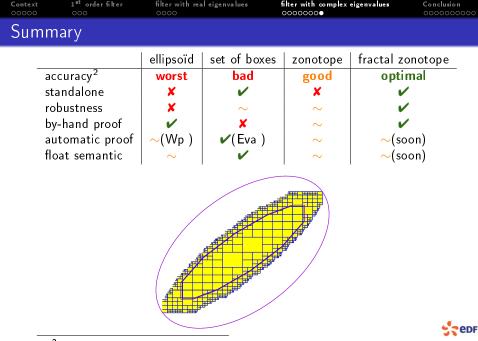
- find the optimal bound
- work in the general case
- the invariant is automatically computed, without hints

Drawbacks:

 cannot be automatically verified within Frama-C yet (soon within the Numerors plugin [6])

<ロ> (四) (四) (三) (三) (三)





²Every method is accurate enough to prove that the filter itself does not overflow

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	000000000
Plan				

1 Context

- 2 1st order filter
- ③ filter with real eigenvalues
- ④ filter with complex eigenvalues

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	00000000	000000000
Take a	way			

- Control program starts by filter \longrightarrow need for accurate analysis!
- Arithmeticians are tackling the challenge to design correct-by-construction filters (WCPG theorem + sound error analysis) [5, 4, 12] → reached for fixed-point implementations
- Eva can prove 1st order filter optimal bounds
- For higher order filter, arbitrary accurate bounds can be automatically obtained within Frama-C using **subdivision techniques**...but it's costly!
- work-in-progress: implementing the fractal zonotope in Frama-C to infer automatically and efficiently optimal bounds.
- more details on the Frama-C book's chapter 12 and the companion document [11]

イロト イヨト イヨト イヨト 二日

24 / 32

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000
Keep	going			

- Merge effort from arithmetic and abstract interpretation communities.
- Filter detection: manage the diversity of implementations
- Next challenge: mutable filter

```
int main() {
  double y, y1, y2, u=0;
while (Frama_C_interval(0, 1)) {
    u = Frama_C_double_interval(IN_MIN, IN_MAX);
    fast_convergence = Frama_C_interval(0, 1);
    y^2 = y^1;
   y1 = y;
   if (fast_convergence) {
    y = a11 * y1 + b11 * u;
    }
    else {
      y = a21 * y1 + a22 * y2 + b21 * u ;
    }
```

イロン イヨン イヨン イヨン

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	0000000000

Annex

In our toy example, we have:

$$\left\{egin{array}{ll} \mathbb{h}(0) = 0.5 \ \mathbb{h}(1) = 0.75 \ orall k & \mathbb{h}(k) = 1.5*\mathbb{h}(k-1) - 0.75*\mathbb{h}(k-2) \end{array}
ight.$$

We can check that \mathbb{h} is pseudo-periodic, so the optimal invariant is a classic 12-faces zonotope, described by the following formula (see [11] for details):

$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1-\frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3}-k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1-\frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2}-k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$

where $\forall k \in [0, 11], \varepsilon_k \in [-1, 1].$

27 / 32

ヘロト ヘロト ヘビト ヘビト

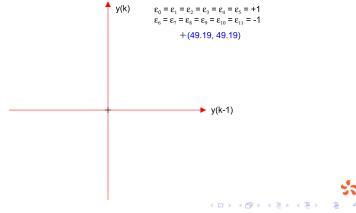
Context 1st order filter filter with real eigenvalues 00000 000 000

filter with complex eigenvalues

Conclusion 0000000000

Graphical construction of the zonotope

$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$



28 / 32

 Context
 1st order filter
 filter with real eigenvalues

 00000
 000
 0000

filter with complex eigenvalues

Conclusion 00000000000

Graphical construction of the zonotope

$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$

y(k) $\varepsilon_6 = \varepsilon_1 = \varepsilon_2 = \varepsilon_3 = \varepsilon_4 = \varepsilon_5 = +1$ $\varepsilon_0 = \varepsilon_7 = \varepsilon_8 = \varepsilon_9 = \varepsilon_{10} = \varepsilon_{11} = -1$ ▶ y(k-1) <ロ> <同> <同> <同> < 同> < 同> < □> <

æ

 Context
 1st order filter
 filter with real eigenvalues

 00000
 000
 0000

filter with complex eigenvalues

Conclusion 0000000000

Graphical construction of the zonotope

$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$

 ϵ_1 : +1 \rightarrow -1 $\epsilon_7: -1 \rightarrow +1$ x += -17.30 (49.19, 31.89)y += -25.95 (31.89, 5.95) → y(k-1) イロト イヨト イヨト イヨト

 Context
 1st order filter
 filter with real eigenvalues

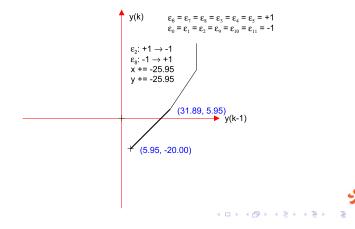
 00000
 000
 0000

filter with complex eigenvalues

Conclusion 0000000000

Graphical construction of the zonotope

$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$



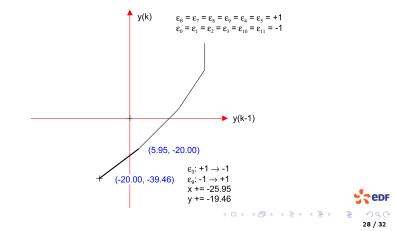
28 / 32

Context 1st order filter filter with real eigenvalues fil 00000 000 000 000

filter with complex eigenvalues

Conclusion 0000000000

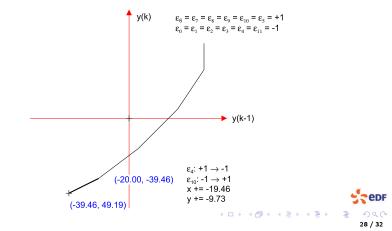
$$\begin{array}{rcl} y(k) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{array}$$



Context 1st order filter filter with real eigenvalues 00000 000 000 filter with complex eigenvalues

Conclusion 0000000000

$$\begin{array}{rcl} y(k) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{array}$$

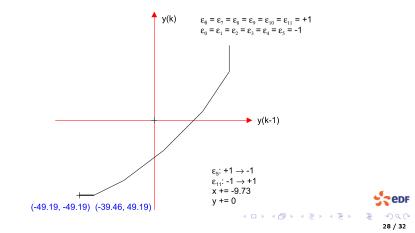


Context 1st order filter filter with real eigenvalues 00000 000 0000

filter with complex eigenvalues

Conclusion 0000000000

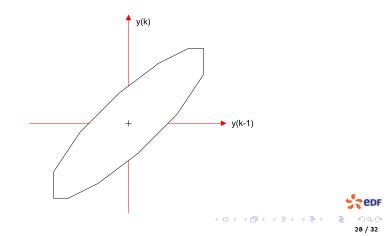
$$\begin{cases} y(k) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) \in \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{cases}$$



Context 1st order fiker filter with real eigenvalues 00000 000 000 filter with complex eigenvalues

Conclusion 0000000000

$$\begin{array}{rcl} y(k) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k} \cos\left(\frac{\pi}{3} - k\frac{\pi}{6}\right) \varepsilon_{k} \\ y(k-1) & \in & \frac{\|u\|_{\infty}}{1 - \frac{3^{6}}{2^{12}}} \sum_{k=0}^{11} \left(\frac{\sqrt{3}}{2}\right)^{k-1} \cos\left(\frac{\pi}{2} - k\frac{\pi}{6}\right) \varepsilon_{k} \end{array}$$



Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	00000000	000000
Référe	ences l			

 D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.

Towards an industrial use of FLUCTUAT on safety-critical avionics software.

イロト イヨト イヨト イヨト

29 / 32

In Formal Methods for Industrial Critical Systems, FMICS, 2009.

[2] J. Feret.

Static analysis of digital filters. In European Symp. on Programming (ESOP), 2004.

[3] J. Feret.

Numerical abstract domains for digital filters. In European Symp. on Programming (NSAD), 2005.

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	0000000	000000000
Référe	ences II			

[4] Diane Gallois-Wong.

Formalisation en Coq des algorithmes de filtre numérique calculés en précision finie. (Coq formalization of digital filter algorithms computed using finite precision arithmetic). PhD thesis, University of Paris-Saclay, France, 2021.

[5] T. Hilaire.

From filters/controllers to code – contributions to fixed-point arithmetic implementations under accuracy constraint. Habilitation à Diriger des Recherches (HDR) – Sorbonne Université, 2024.

[6] M. Jacquemin.

Arithmétiques relationnelles pour l'analyse par interprétation abstraite de propriétés de précision numérique. (Relational Arithmetics for Abstract Interpretation Based Analysis of Numerical Accuracy Properties).

PhD thesis, University of Paris-Saclay, France, 2021.

ヘロン 人間 とうほう うほう

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	00000000	0000000000
Référe	nces III			

 B. Kabi, E. Goubault, A. Miné, and S. Putot.
 Combining zonotope abstraction and constraint programming for synthesizing inductive invariants.

In Software Verification, VSTTE, and 13th International Workshop, NSV 2020, 2020.

- [8] Elias Khalife, Pierre-Loic Garoche, and Mazen Farhood. Code-level formal verification of ellipsoidal invariant sets for linear parameter-varying systems. In NASA Formal Methods Symposium, pages 157–173. Springer, 2023.
- [9] A. Miné, J. Breck, and T. W. Reps. An algorithm inspired by constraint solvers to infer inductive invariants in numeric programs. In *Programming Languages and Systems, ESOP*, 2016.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Context	1 st order filter	filter with real eigenvalues	filter with complex eigenvalues	Conclusion
00000	000	0000	00000000	000000
Référe	nces IV			

 P. Roux, R. Jobredeaux, P.-L. Garoche, and E. Féron.
 A generic ellipsoid abstract domain for linear time invariant systems. In Proceedings of the 15th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2012, Beijing, China, April 17-19, 2012, 2012.

[11] Franck Vedrine, Pierre-Yves Piriou, and Vincent David. Examples, proofs and algorithms for the verification of loop invariant of linear filters with Frama-C, March 2023.

[12] Anastasia Volkova, Christoph Lauter, and Thibault Hilaire. Computing the worst-case peak gain of digital filter in interval arithmetic.

In 17th International Symposium on Scientific Computing, Computer Arithmetics and Verified Numerics., 2016.

> **・ロト < 伊ト < ミト < ミト ミ シ へ へ** 32 / 32