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Numerical �lter

A (discrete-time) signal x : Z→ R maps discrete times to real
values.

A �lter H : (Z→ R)→ (Z→ R) maps an input signal u into an
output signal y (or vector of signals).

H
u(k) y(k)

We restrict here to Linear Time Invariant (LTI) �lters of �nite
order n. Its canonical form is a constant-coe�cient di�erence
equation.

LTI �lter

y(k) =
n∑

i=0

bi .u(k − i)−
n∑

i=1

ai .y(k − i)

where {ai}1≤i≤n and {bi}0≤i≤n are constant real coe�cients.
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EDF context

Quali�cation of critical control systems for nuclear power plant

We must verify the absence of RTE (RunTime Error)

In particular, the absence of numerical over�ows

A control program classically starts with the �ltering of sensor signals

So the proven �lter bounds should be as accurate as possible!

Toy example :

y = filter(input) ;

//@ assert y <= 49.9 ;

output = 1.0 / (50.0 - y) ;
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State of the art

More than two decades of e�ort by the abstract interpretation
community, that produced a number of tuned relational numerical
abstract domains, implemented in Astree or Polyspace:

Ellipsoids [2, 3, 10]
Zonotopes [1]
Set of invariants (Boxes, zonotopes, polyhedra...) [7, 9]

None of them are currently mature in Frama-C

Current approch:
1 Pre-compute the invariant once and for all outside Frama-C
2 Import the invariant as an ACSL annotation
3 Check the invariant within Frama-C (Eva or Wp )

By the way: recent breakthrough in the arithmetic community [5]

6 / 32



Context 1st order �lter �lter with real eigenvalues �lter with complex eigenvalues Conclusion

Bounding �lter output

Worst-Case Peak-Gain (WCPG) Theorem

‖H (u)‖∞ ≤ ‖h‖1.‖u‖∞

where h = H (δ) is the impulse response of the �lter (δ is the impulse
signal: δ(0) = 1 and ∀k 6= 0, δ(k) = 0).

‖h‖1 is called the Worst-Case Peak-Gain (WCPG) and can be
correctly computed [12].

This bound is optimal and reachable [4].

To take into account encoding error,
we must introduce two additional error
�lters: H∆ (coe�cient quantization)
and H ∗

ε (roundo� error), where ε is
the error signal depending on the
implementation details (algorithm,
machine arithmetic...) [5].
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Warmup

Example of 1st order �lter ∀k u(k) ∈ [−10, 10]
∀k < 0 y(k) = 0
∀k ≥ 0 y(k) = 0.9y(k − 1) + 0.5u(k)

h(k) = 0.5 ∗ 0.9k

=⇒ ‖h‖1 = 0.5

∞∑
k=0

0.9k = 0.5
1

1− 0.9
= 5

=⇒ ‖y‖∞ ≤ 5‖u‖∞ = 50

1st order �lters can be abstracted in interval domain:

0.9 ∗ [−50, 50] + 0.5 ∗ [−10, 10] = [−50, 50]

This is also correct in �oating point arithmetic !
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Demo 1

double out1;

const double ki[] = { 0.5 };

const double ko[] = { 1.0, -0.9 };

int main() {

double in=0, out=0;

//@ widen_hints out , -50.0, 50.0;

while (Frama_C_interval (0, 1)) {

out1 = out;

in = Frama_C_double_interval (-10.0, +10.0);

out = -ko[1]* out1 + ki[0]*in;

}

}

The command
$ frama-c -eva filter1.c

produces the following output:

[eva] ====== VALUES COMPUTED ======

[eva:final-states] Values at end of function main:

y ∈ [-50. .. 50.]
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Increasing the complexity

Example of 2nd order �lter with real eigenvalues ∀k u(k) ∈ [−10, 10]
∀k < 0 y(k) = 0
∀k ≥ 0 y(k) = y(k − 1)− 0.2 ∗ y(k − 2) + 0.1 ∗ u(k)

The characteristic polynom is p(λ) = λ2 + λ− 0.2. We can check that
its discriminant is ∆ = 0.2 and so its eigenvalues are real:{
λ1 ≈ 0.27639320225
λ2 ≈ 0.72360679775

WCPG theorem application1: ‖y‖∞ ≤ 0.5 ∗ ‖u‖∞ = 5

Interval domain does not help anymore !

[−5, 5]− 0.2 ∗ [−5, 5] + 0.1 ∗ [−10, 10] = [−8.5, 8.5] 6⊆ [−5, 5]

1WCPG can be safely computed using https://github.com/�xif/WCPG
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Wp comes to rescue

Linear decomposition theorem

A �lter of order n having only real eigenvalues can be decomposed into a
linear combination of n �lters of order 1.

y =
λ1.e1 + λ2.e2
λ1 − λ2

with {
e1(k) = λ1.e1(k − 1) + 0.1 ∗ u(k)
e2(k) = λ2.e2(k − 1)− 0.1 ∗ u(k)

We can implement this implementation as ghost code and prove it
with Wp and external solvers.

Eva �nish the proof to bound e1, e2 and then y .

Limitation: the Wp proof rely on the real model !

Perspective: use an external mechanized �lter theory (like in [4]) to
bound the �oating-point error and import the proof in Wp .
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Demo 2

The command
$ frama-c -wp -wp-prover altergo,z3 -wp-model real

filter2-fc.c -then -eva filter2-fc.c

produces the following output:

[wp] Proved goals: 17 / 18

Qed: 13 (4ms-25ms-52ms)

Alt-Ergo 2.3.3: 2 (164ms-176ms) (127) (interrupted: 1)

Z3 4.8.6: 2 (50ms-410ms) (1076863) (interrupted: 1)

[eva] ====== VALUES COMPUTED ======

[eva:final-states] Values at end of function main:

e1 ∈ [-1.38196601125 .. 1.38196601125]

e2 ∈ [-3.61803398875 .. 3.61803398875]

y ∈ [-6.7082039325 .. 6.7082039325]
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Serious business

Example of 2nd order �lter with complex eigenvalues

 ∀k u(k) ∈ [−10, 10]
∀k < 0 y(k) = 0
∀k ≥ 0 y(k) = 1.5 ∗ y(k − 1)− 0.75 ∗ y(k − 2) + 0.5 ∗ u(k)

We can check that ∆ = −0.75 < 0

WCPG theorem application: ‖y‖∞ ≤ 4.91892‖u‖∞ = 49.1892

For this kind of �lter, we have to generate relational invariants:

ellipsoid
set of boxes
zonotope
fractal zonotope
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Ellipsoïd

Idea: Find an invariant of the form [3, 10]:

y(k)2 +a∗y(k−1)2 +b ∗y(k)∗y(k−1) +c ∗y(k) +d ∗y(k−1) ≤ e

Invariant found for our toy example:

y(k)2 + 0.75 ∗ y(k − 1)2 − 1.5 ∗ y(k) ∗ y(k − 1) ≤ 1239.81

Advantages: short, readable and veri�able by hand invariant

Drawbacks:

Invariant veri�cation with Wp is hard [8]
rely on an external polynomial solver
don't work if the norm of the complex eigenvalues are too close to 1
worst accuracy −→ |y(k)| ≤ 81.3162 (recall: ‖y‖∞ = 49.1892)
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Set of boxes

Idea: state partitioning abstraction to compute an invariant of kind
disjunction of intervals [9]

Divide and conquer (split the input and state intervals in many
chunks)
The trick comes from constraint programming research �eld

Advantages:

fully automatic: no need for a priori knowledge
veri�able with Eva within interval domain −→ natively valid in
�oating-point arithmetic

Drawbacks:

bad performance −→ generation : 4s , veri�cation : 62s
better but still bad accuracy −→ |y(k)| ≤ 65 (recall:
‖y‖∞ = 49.1892)
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Zonotope

Idea: Find an invariant in an a�ne form [1]:

n∧
k=0

y(k) ∈ αk,0 +
N∑
i=1

αk,i ∗ εi

where ∀i , εi ∈ [−1, 1] are shared noise symbols

at each iteration, instead of applying classic widening, we introduce a
symbolic perturbation over the a�ne equations, until a post-�xpoint
is reached.

Advantages:

good accuracy −→ |y(k)| ≤ 50.32 (recall: ‖y‖∞ = 49.1892)
relatively basic reasoning to prove the invariant (linear simpli�cation
+ interval arithmetic)

Drawbacks:

rely on external complex algorithms and heuristics (Fourier-Motzkin,
Simplex)
don't work if the norm of the complex eigenvalues are too close to 1
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Fractal zonotope

Idea: expliciting the raw relation between y and u, through the
impulse response h:

y(k) = (h ∗ u)(k) =
k∑

i=0

h(i).u(k − i)

Remark: the impulse response h is an inductive sequence
the associated invariant is a fractal zonotope (a kind of "zonotope
with in�nite vertices").

Advantages:

�nd the optimal bound
work in the general case
the invariant is automatically computed, without hints

Drawbacks:

cannot be automatically veri�ed within Frama-C yet (soon within the
Numerors plugin [6])
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Fractal zonotope (cont.)
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Summary

ellipsoïd set of boxes zonotope fractal zonotope
accuracy2 worst bad good optimal
standalone 8 4 8 4
robustness 8 ∼ ∼ 4
by-hand proof 4 8 ∼ 4
automatic proof ∼(Wp ) 4(Eva ) ∼ ∼(soon)
�oat semantic ∼ 4 ∼ ∼(soon)

2Every method is accurate enough to prove that the �lter itself does not over�ow
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Take away

Control program starts by �lter −→ need for accurate analysis!

Arithmeticians are tackling the challenge to design
correct-by-construction �lters (WCPG theorem + sound error
analysis) [5, 4, 12] −→ reached for �xed-point implementations

Eva can prove 1st order �lter optimal bounds

For higher order �lter, arbitrary accurate bounds can be
automatically obtained within Frama-C using subdivision
techniques...but it's costly!

work-in-progress: implementing the fractal zonotope in
Frama-C to infer automatically and e�ciently optimal bounds.

more details on the Frama-C book's chapter 12 and the companion
document [11]
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Keep going

Merge e�ort from arithmetic and abstract interpretation
communities.

Filter detection: manage the diversity of implementations

Next challenge: mutable �lter

int main() {

double y, y1 , y2, u=0;

while (Frama_C_interval (0, 1)) {

u = Frama_C_double_interval(IN_MIN , IN_MAX);

fast_convergence = Frama_C_interval (0, 1);

y2 = y1;

y1 = y;

if (fast_convergence) {

y = a11 * y1 + b11 * u ;

}

else {

y = a21 * y1 + a22 * y2 + b21 * u ;

}

}

}
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Annex
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Optimal zonotope construction for the toy example

In our toy example, we have: h(0) = 0.5
h(1) = 0.75

∀k h(k) = 1.5 ∗ h(k − 1)− 0.75 ∗ h(k − 2)

We can check that h is pseudo-periodic, so the optimal invariant is a
classic 12-faces zonotope, described by the following formula (see [11] for
details):

y(k) ∈ ‖u‖∞
1− 36

212

11∑
k=0

(√
3

2

)k

cos
(π
3
− k

π

6

)
εk

y(k − 1) ∈ ‖u‖∞
1− 36

212

11∑
k=0

(√
3

2

)k−1

cos
(π
2
− k

π

6

)
εk

where ∀k ∈ [0, 11], εk ∈ [−1, 1].
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Graphical construction of the zonotope


y(k) ∈
‖u‖∞
1− 36

212

11∑
k=0

(√
3

2

)k

cos

(
π

3
− k

π

6

)
εk

y(k − 1) ∈
‖u‖∞
1− 36

212

11∑
k=0

(√
3

2

)k−1

cos

(
π

2
− k

π

6

)
εk

ε ε1 ε2 ε3 ε4 ε5

ε6  ε7  ε8  ε9  ε10  ε11
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Graphical construction of the zonotope
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