
©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

T T C : T r u s t - T y p e C h e c k i n g

f o r C p r o g r a m s

B e n o î t B o y e r & A d r i e n C h a m p i o n 1

2 0 2 4 / 7 / 2 4

MFR2024-ARC-0256

1: OCamlPro

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

Te n Ye a r s o f I n d u s t r i a l E x p e r i m e n t s w i t h F r a m a - C

• Mitsubishi Electric is a 100 years old company (1921)

• Long experience in code development in various domains

➔ Home appliance equipment … to … large and complex systems (plants)

• Addressing safety-critical domains as well as cyber-security challenges

➔ Train, aerospace, satellite, plants, factory automation…

• Large base of industrial C-code (embedded)

• Frama-C: a super toolbox for industrial needs

• MERCE conducted experiments

• Static analysis of legacy code (Frama-C/EVA, TrustInSoft Analyzer)

• Automatic case test generation (PathCrawler)

• Proving functional code analysis (Frama-C/WP)

• …

• MERCE also developed specific analyses (Frama-C plugins)

• TTC is one of these projects

2

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

C o n t e x t : c r i t i c a l I n d u s t r i a l Sy s t e m s

• SCADA systems: supervision of industrial systems

3

Public area

(potentially unsafe!)

• Critical area

• Restricted access

Control SW must be secured

security

integrity

confidence availability

“How to be sure that the isolation is implemented safely ?”

Approach proposed

- Provide developers with security libs

- Automatically check that security functions are correctly used

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

T h e c o n s i d e r e d w o r k f l o w (r o u g h l y)

• Security experts in charge of

• System analysis : weaknesses, threats…

• Annotating API

• Identification of the critical functions

e.g., actuation functions : trusted → trusted / unsafe

• Explaining how unsafe data can be secured (security functions : unsafe → trusted)

• Developers

• Implement the control SW (PLC programs)

• Should respect the security policy (hopefully)

• TTC: automatic checking of the security policy

• Rely on APIs annotated by security experts

• Type errors ➔ security issues (unsafe data given while trusted content expected)

• Should help developers to fix some security implementation issues

4

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

B a s i c e x a m p l e : unsafe o r trusted ?

6

No annotation ⇒ unsafe

- read() is unsafe

Trusted data must be declared

(with __attribute__)

Control flow (behavior)

cannot rely on unsafe data!

Frama-C/TTC…

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

O v e r v i e w o f t h e t y p e s y s t e m

• Organized in several layers “aligned" on C types (subset)

• TTC analysis is sound for analyzed programs

• Free of runtime errors

• Single threaded

• Simple memory layout supported

• No nested pointers ➔ OK for many PLC programs

7

struct {…}, union {…}, int arr[]

int, char, float…

int *i, *arr[], *struct {}

1- Plain types

2- Compound types

3- References

Trust-types C - types

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

P l a i n Tr u s t - Ty p e s

• Two main types for simple data types

• Trusted

• Unsafe

8

cmp(𝑡𝑡1, 𝑡𝑡2) returns

- Some 0 if 𝑡𝑡1 and 𝑡𝑡2 are the same,
- Some n > 0 if 𝑡𝑡1 is strictly more trusted than 𝑡𝑡2,
- Some n < 0 if 𝑡𝑡2 is strictly more trusted than 𝑡𝑡1, and
- None otherwise.

More trusted ?

int a, b, c; //uninitialized vars are unsafe

a = 1; //a is trusted, because constants are trusted

b = unsafe_get();

c = b * a; //c is tainted unsafe because of b

while (c >= 0) { // type error -> control flow based on unsafe data

apply(b); // type error: apply requires Trusted data

b = sanitize(b, a); // now, b is trusted

c--;

}

apply(b); type error again….

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

P l a i n Tr u s t - Ty p e s

• Akin to tainting analysis…

• Type checking implemented as abstract interpretation

• The simplest lattice

• Operations ⊔, ⊏

• Tainting ➔ ⊔ is sufficient

• Subtyping (⊏) : “Any trusted data can be considered as unsafe”

We introduced Functions

Comparison for subtyping

9

cmp(𝑡𝑡1, 𝑡𝑡2) returns

- Some 0 if 𝑡𝑡1 and 𝑡𝑡2 are the same,
- Some n > 0 if 𝑡𝑡1 is strictly more trusted than 𝑡𝑡2,
- Some n < 0 if 𝑡𝑡2 is strictly more trusted than 𝑡𝑡1, and
- None otherwise

More trusted ?

Partial order ???

unsafe

trusted

⊏

🤔

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

M o r e i n f o r m a t i v e Tr u s t - Ty p e s

• Quickly, { trusted, unsafe } became too limited ➔ Trust-types with tags

10

Practically, the lattice is finite, because

• considered tags = annotations (finite set)

No complexity issue

- new trust-types inferred from join()

More

trusted ⊏
,⊑

Examples:
trusted[“key”], unsafe[“command”],

trusted[“user”],

trusted[“speed”, “accel”] …

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

C o m p o s i t e s t r u s t - t y p e s

• For C-struct

• Comparing composite types

• Extending join() to composite types

11

(field wise join)

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

A r r a y t r u s t - t y p e s

• Two cases

• Known length array →

• Unknown length (or too large !) → , representing the trust-type of each cell

• Comparison of arrays is cell-wise (if possible…)

• Join arrays

12

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

O f f s e t p r o j e c t i o n s

• Access to fields

• Access to arrays

13

We assume the program runs safely !

(no out of bound access, valid field accesses …)

 Out of bounds error detected

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

W h a t a b o u t r e f e r e n c e s ?

• From the case studies (Factory Automation)

• Simple memory layout (PLC applications)

Static memory allocation, 1 level of referencing (pointer to structs to arrays), no nested pointers…

• Currently, TTC handles a very basic pointer manipulation

• No need of complex aliasing analysis

• We introduce references on top of plain/composite/array trust-types

• 3 kinds of references

unknown : not initialized or no information about it

exact : the reference target is well-known

corruption : the reference may have several targets

14

1- Plain types

2- Compound types

3- References

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

R e f e r e n c e s - e x a m p l e

15

Because we have no idea

whether pntr points to v1 or v2

➔We don’t know which of v1, v2 has been sanitized

At the end of if-then-else, we deduce that

BUT we guarantee that pntr is trusted (sanitized)

TTC deduces that the call to apply()is safe !

While it would not be with &v1 or &v2

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

Fragile f u n c t i o n s

16

Using a critical function with unsafe data

trusted apply (trusted input,

trusted input2);

raises an error !

Sometimes we would like to use the same function

with unsafe/trusted contexts

A fragile function becomes unsafe it is fed with

unsafe content

TTC Error: control flow on unsafe data

unsafe data provided !

Fragility !

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

To s u m u p

• TTC – trust types checking

• Akin of tainting analysis

• Quick check for detect for security implementation issues

• Embedded control SW

• Limitations

• absence of runtime errors using abstract interpretation ?

Buffer overflow is a major issue

• Perspectives

• Function annotations = contracts ➔ verifying function implementations vs. contracts

• Improve the alias analysis, handle more complex memory layout (addressing other domains than FA)

17

©Mitsubishi Electric R&D Centre Europe MERCE_Slides_2022_05_10ConfidentialExport Control: NLR

F e e d b a c k f r o m R & D J a p a n

• The tool have been evaluated by R&D in Japan… issues drawbacks

• Implementation in Ocaml in industrial context… (no internal support for the language & tool)

• Too limited support of windows platforms (common development platforms)

• Additional effort and work for integrating the tool in existing workflows

• Mitsubishi Electric provides an IDE for factory automation

• Difficult for MERCE to anticipate all the needs, case-by-case study to adapt the technology…

• MERCE’s objectives for formal methods

• Identify the targets and technologies to be used

• Demonstrate and highlight the benefits of formal methods for industry

• Evaluate the scientific and technological issues, (jointly with Japanese R&D)

• Promote and provide integration means to easy technology adoption

18

