‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

TTC: Trust-Type Checking
for C programs

Benoit Boyer & Adrien Champion'

2024/7/24

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

MFR2024-ARC-0256

1: OCamlPro

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential

. . . ‘ MITSUBISHI
Ten Years of Industrial Experiments with Frama-C AW ELECTRIC

Changes for the Better

» Mitsubishi Electric is a 100 years old company (1921)
* Long experience in code development in various domains
=» Home appliance equipment ... to ... large and complex systems (plants)
» Addressing safety-critical domains as well as cyber-security challenges
=> Train, aerospace, satellite, plants, factory automation...

« Large base of industrial C-code (embedded)

» Frama-C: a super toolbox for industrial needs

« MERCE conducted experiments
« Static analysis of legacy code (Frama-C/EVA, TrustinSoft Analyzer)
« Automatic case test generation (PathCrawler)

* Proving functional code analysis (Frama-C/WP)

* MERCE also developed specific analyses (Frama-C plugins)

« TTC is one of these projects

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 2

Context : critical Industrial Systems o Ty

Changes for the Better

» SCADA systems: supervision of industrial systems

Public area
(potentially unsafe!)

Control SW must be secured Aw/ QQ, e Critical area
m)
— WANQ/ @\Q integrity . Q * Restricted access
e ocusting —

security L]
N
confidence availability Vo . At
l 7
-' %
“How to be sure that the isolation is implemented safely ?”

Approach proposed
- Provide developers with security libs
- Automatically check that security functions are correctly used

I ;

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential

The considered workflow (roughly) o Ty

Changes for the Better

 Security experts in charge of
« System analysis : weaknesses, threats...
* Annotating API
« Identification of the critical functions
e.g., actuation functions : trusted - trusted / unsafe

» Explaining how unsafe data can be secured (security functions : unsafe = trusted)

« Developers
* Implement the control SW (PLC programs)
» Should respect the security policy (hopefully)

« TTC: automatic checking of the security policy
* Rely on APIs annotated by security experts
» Type errors =» security issues (unsafe data given while trusted content expected)

» Should help developers to fix some security implementation issues

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 4

Basic example : unsafe or trusted?

Trusted data must be declared
No annotation = unsafe ___—{int read(void)] (with _ attribute)

= r‘ead() Isunsafe int|__attribute__((trusted)) |sanitize(
int Tnput

)

int __attribute__((trusted)) apply(
int __attribute__((trusted)) input

s

void main_loop() {
while (1) {
int tmp = read();
int safe = sanitize(tmp);

Control flow (behavior) int|{error = apply(tmp);|// Using unsafe instead of trusted.
——— it (error) {
cannot rely on unsafe data! break;
¥
¥

[kernel] Parsing example_f.c (with preprocessing)
h [ttc] example_0.c:15: User Error:
% dllegal call to function ‘apply’:
parameter #1 (input) should be of type int trusted
Frama—C/TTC... found expression of type int unsafe: tmp
[ttc] function “main_loop® is unsafe
[ttc] User Error: done with 1 errors
[kernel] Plug-in ttc aborted: invalid user input.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential

" MITSUBISHI
AN ELECTRIC

Changes for the Better

Overview of the type system

« Organized in several layers “aligned" on C types (subset)

1- Plain types —
_e@w“\’ 2- Compound types —
N\
3- References —
v

Trust-types

« TTC analysis is sound for analyzed programs
* Free of runtime errors

« Single threaded

» Simple memory layout supported

* No nested pointers = OK for many PLC programs

©Mitsubishi Electric R&D Centre Europe Export Control: NLR

int, char, float...
struct {...}, union {...}, int arr[]

int *i, *arr[], *struct {}

C - types

Confidential

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Plain Trust-Types o MTsyeeH

Changes for the Better

, , int a, b, ¢; //uninitialized vars are unsafe
« Two main types for simple data types

. Trusted :
ruste a=1; //a is trusted, because constants are trusted

« Unsafe b = unsafe_get();

c = b *a; //cis tainted unsafe because of b

while (c >= 0) { // type error -> control flow based on unsafe data
apply(b); // type error: apply requires Trusted data
b = sanitize(b, a); // now, b is trusted
C--,

}

apply(b); type error again....
cmp(tty, tt,) returns

- SomeO if tt, and tt, are the same,
- Somen >0 iftt; is strictly more trusted than tt,,
- Some n<0 iftt, is strictly more trusted than tt;, and
- None otherwise.
* cmp : llype — llype — IN option

e join: Ilype — Ilype — Ilype More trusted ?

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 8

‘ MITSUBISHI

Plain Trust-Types &'\ ELECTRIC|
« Akin to tainting analysis... unsate
o

» Type checking implemented as abstract interpretation trusted

* The simplest lattice

* Operations U,
« Tainting = U is sufficient
» Subtyping (&) : "Any trusted data can be considered as unsafe”

We introduced Functions * cmp : llype — Ilype — N option

e join: Ilype — Ilype — Ilype

Comparison for subtyping cmp(tty, tty) returns More trusted ?
- SomeO if tt; and tt, are the same, Partial order ??? 4=
- Some n>0 if tt, is strictly more trusted than tt,, a ((’:L‘

- Somen<0 iftt, is strictly more trusted than tt;, and
- None otherwise

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential ‘

More ||
trusted ||
v

L4
©Mitsubishi Electric R&D Centre Europe

trusted["a" "b'j

More informative Trust-Types

unsate

/ \".
‘

unsafe["spd"]

unsafe["a"]
/ #

unsafe["b"] unsafe["acc"]

i A,
1]
unsafe["a", "b"]* unsafe["a", "c"] \\ unsafe["b", "c"] _ +++' + unsafe[' spd"\ "acc"]
i L
adul |
{ >
Y v
' A3]
A1
\]
it
I‘
1 1]
' \
] “
]
1 1‘
I, '
1
l‘ I
' 1
N 1
N} 1
N [}
r]]
r I
’ '

ai

| tlusted - Al trusted [""] --- :trusted spd" ! trusted[acc] '
1

e

tlusted["a", "c"] trusted["b", "c"] ---‘* trusted|"spd". "acc"|

Export Control: NLR

.
¥,
.
.
.
\
L
!
‘
\
) '
» 1
hd v
.
]
v !
vl
LY
A
't
1
) 1“
>, I
N [
L
v g 1
., i
)]
1 '
1y '
"y,
r' ‘e
’ ‘o
)
’ W
’ 1
‘ \
’ [
’ M
)
1
P |
'
']
’ '
]
/ 1
4 [
F
’ I
’ '

Confidential

Quickly, { trusted, unsafe } became too limited =» Trust-types with tags

join(

join(
join(

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Examples:

trusted[Ykey”], unsafe[“command”],
trusted[Yuser”],

trusted[“speed”, “accel”]

Practically, the lattice is finite, because

considered tags = annotations (finite set)

No complexity issue

- new trust-types inferred from join()

unsafe, trusted|"spd", "acc"]) = unsafe
trusted["a", "b"], trusted["a","c"]) = trusted["a"]
trusted["a", "c"], trusted["spd","acc"]) = trusted|]

10

Composites trust-types o MTsyeeH

Changes for the Better

 ForC-struct
Definition A composite [lype for a composite type T with fields field,, field,, is a complete map from fields to
plain llypes. We will write composite Ilypes as

{ field, : tt. field,, : tt, }.

« Comparing composite types
cmp({field, : 11y, ..., field, : 11y}, {field) : 1], ..., field, : 11})

is Some res if
Vi € [L.n]. cmp(rt;. t1]) = Some res or Some 0,
None otherwise.

» Extending join() to composite types

join({field, : tr, ..., field, : 11y}, {field) : 1], ..., field, : tt;})

IS
{field, : join(try.1t]). field, : join(rt,.tt;)}. (field wise join)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential ‘ 11

Array trust-types o MTsyeeH

Changes for the Better

* Two cases

« Known length array > Ar7ay(tty, ... tty)

« Unknown length (or too large) > Vec(tt), tt representing the trust-type of each cell

» Comparison of arrays is cell-wise (if possible...)

cmp(Array(tty.....tty). Army(rr’l'._ cotth)) = Somem | ifVie€[l.n], cmp(rt;, rr;) = Some m or Some 0
cmp(Array(tty.. .. tty), Array(tt], ... 11;)) Some m | otherwise
cmp(Vec(tr), Vec(rt”)) = cmp(tt, tt’)
cmp(Array(tty.tt,). Vec(rr)) = cmp(Vec(join(rty. ..., tt,)). Vec(tt))
cmp(Vec(tt), Array(tty.....tt,)) = cmp(Vec(tt), Vec(join(tty,t1,)))
« Join arrays
join(Array(ity.....tty). Arra}-'(rr’l'. ... 1t)))) = Array(join(ity, rr‘]')._ ..., join(tty. 1))
join(Vec(tr), Vec(it”)) Vec(join(tt, tt’))
join(Array(tty.....tt,). Vec(tt)) = Jjoin(Vec(join(tty,....tty)). Vec(tt))
join(Vec(tt), Array(tty.....tty)) = join(Vec(tt). Vec(join(tty,11,)))

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 12

Offset projections e sy

Changes for the Better

e Access to fields

Definition Given a field f : stringand a llypett : llype,
resolve field(f, fieldy ity [i iz fieldy Sity) = (it.

» Access to arrays

Definition Given an optional index idx : N option and a llype tt : Ilype, function resolve_index outputs

resolve_index(Somei, Array(tty.....tty)) = (1t ifi <n

resolve_index(Somei, |Array(tty.....tty,)) = unsafe | ifi > n | <€ Outof bounds error detected
resolve_index(None. Array(tty.....tt,)) = join(tt|.....tty)

resolve_index(_. Vec(rr)) = 1t

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 13

‘ MITSUBISHI
What about references? &% ELECTRIC

Changes for the Better

From the case studies (Factory Automation)
» Simple memory layout (PLC applications)

Static memory allocation, 1 level of referencing (pointer to structs to arrays), no nested pointers...

Currently, TTC handles a very basic pointer manipulation

* No need of complex aliasing analysis

We introduce references on top of plain/composite/array trust-types

3 kinds of references 1- Plain types
unknown : not initialized or no information about it -e@(&\\} 2- Compound types
. N
exact : the reference target is well-known
3- References

corruption : the reference may have several targets

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 14

References - example

int read(void);

int __attribute__((trusted)) sanitize(
int input
)
void apply(
int * __attribute__((trusted)) input
);

int __attribute__ ((trusted)) get_cond(void);

void main_loop () {
int v_1;
int v_2;
int *pntr;

while (1) {
if (get_cond()) {
v_1l = read();
pntr = &v_1;
} else {
v_2 = read();
pntr = &v_2;

};
xpntr = sanitize (xpntr);

apply(pntr);

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

At the end of if-then-else, we deduce that

v_1: unsafe
v_2 : unsafe
pntr: Corrupt(None. {v_1+~ {[1}. v_2:—~ {[1}})

Because we have no idea
whether pntr points to v1 or v2

= We don't know which of vl, w2 has been sanitized

BUT we guarantee that pntr is trusted (sanitized)

v_1: unsafe
v_2 : unsafe
pntr: Corrupt(Some trusted, {v_1+ {[]1}. v_2 :— {[]1}})

TTC deduces that the call to apply () is safe !
While it would not be with &vl or &v2

15

Fragile functions

Using a critical function with unsafe data
trusted apply (trusted input,
trusted input?2?);
raises an error !

Sometimes we would like to use the same function
with unsafe/trusted contexts

A fragile function becomes unsafe it is fed with
unsafe content

©Mitsubishi Electric R&D Centre Europe Export Control: NLR

/11

int

/17

int
)3

int
/11

/17
[/

Reads an unsafe -integer.
read(void);

Sanitizes an untrusted integer.
bad_sanitize(
int dinput

__attribute__((trusted)) good_sanitize(
int dinput
Applies something, input integer must be trusted.

Return value is an error flag (true if error) and is trusted.

int

)5

__attribute__ ((fragile,trusted)) apply(
int __attribute__ ((trusted)) -input,
int __attribute__ ((trusted)) -input2

/// Entry point.
void main_loop() {
while (1) {
int tmpl = read();
int tmp2 = read();

¥

int safel
int safe2
int error

brealX Fragility !
¥
}

TTC Error: control flow on unsafe data

bad_sanitize(tmpl);
good_sanitize(tmp2);
apply safel,safe2);

unsafe data provided !

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Confidential

16

¢ wmiTsuBiSH
To sum up &% ELECTRIC

Changes for the Better

« TTC —trust types checking
 Akin of tainting analysis
» Quick check for detect for security implementation issues

« Embedded control SW

+ Limitations
 absence of runtime errors using abstract interpretation ?

Buffer overflow is a major issue

» Perspectives
* Function annotations = contracts = verifying function implementations vs. contracts

* Improve the alias analysis, handle more complex memory layout (addressing other domains than FA)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 17

Feedback from R&D Japan o Ty

Changes for the Better

* The tool have been evaluated by R&D in Japan... issues drawbacks
« Implementation in Ocaml in industrial context... (no internal support for the language & tool)
 Too limited support of windows platforms (common development platforms)

 Additional effort and work for integrating the tool in existing workflows
» Mitsubishi Electric provides an IDE for factory automation

« Difficult for MERCE to anticipate all the needs, case-by-case study to adapt the technology...

« MERCE’s objectives for formal methods
* |dentify the targets and technologies to be used
« Demonstrate and highlight the benefits of formal methods for industry
« Evaluate the scientific and technological issues, (jointly with Japanese R&D)

« Promote and provide integration means to easy technology adoption

©Mitsubishi Electric R&D Centre Europe Export Control: NLR Confidential 18

MITSUBISHI

A ELECTRIC

Changes for the Better

