
Annotation Generation

Frama-C's annotation generator
plug-in

for Frama-C Carbon-20110201

Philippe Herrmann

CEA LIST, Software Reliability Laboratory, Saclay, F-91191

c©2010 CEA LIST

CONTENTS

Contents

1 Introduction 7

1.1 RTE plugin . 7

1.2 Runtime errors . 8

1.3 Other annotations generated . 9

2 Runtime error annotation generation 11

2.1 Integer operations . 11

2.1.1 Addition, subtraction, multiplication 11

2.1.2 Signed downcasting . 12

2.1.3 Unary minus . 13

2.1.4 Division and modulo . 13

2.1.5 Bitwise shift operators . 14

2.2 Left-values access . 15

2.3 Unsigned over�ow annotations . 16

2.4 Expressions not considered by RTE . 17

2.5 Unde�ned behaviors not covered by RTE . 18

3 Precondition annotation generation 19

4 Plugin options 21

Bibliography 23

5

Chapter 1

Introduction

1.1 RTE plugin

This document is a reference manual for the annotation generator plugin called RTE. The
aim of the RTE plugin is to automatically generate annotations for:

• common runtime errors, such as division by zero, signed integer over�ow or invalid
memory access ;

• unsigned integer over�ows, which are allowed by the C language but may pose problem
to solvers ;

• precondition checking (requires and assumes clauses) at function's call sites, as well as
postconditions (ensures clauses) and assigns, for functions having an ACSL speci�cation.

In a modular proof setting, the main purpose of the RTE plug-in is to seed more advanced
plug-ins (such as the weakest-preconditions generation plug-in [5]) with proof obligations.
Annotations can also be generated for their own sake in order to guard against runtime
errors. The reader should be aware that discharging such annotations is much more di�cult
than simply generating them, and that there is no guarantee that a plug-in such as Frama-C's
value analysis [6] will be able to do so automatically in all cases.

RTE performs syntactic constant folding in order not to generate trivially valid annotations.
Constant folding is also used to directly �ag some annotations with an invalid status. RTE
does not perform any kind of advanced value analysis, and does not stop annotation generation
when �agging an annotation as invalid, although it may generate fewer annotations in this
case for a given statement.

Like most Frama-C plugins, RTE makes use of the hypothesis that signed integers have
a two's complement representation, which is a common implementation choice. Also note
that annotations are dependent of the machine dependency used on Frama-C command-line,
especially the size of integer types.

The C language ISO standard [3] will be referred to as ISO C99 (of which speci�c paragraphs
are cited, such as 6.2.5.9).

7

CHAPTER 1. INTRODUCTION

1.2 Runtime errors

A runtime error is a usually fatal problem encountered when a program is executed. Typical
fatal problems are segmentation faults (the program tries to access memory that it is not
allowed to access) and �oating point exceptions (for instance when dividing an integer by
zero: despite its name, this exception does not only occur when dealing with �oating point
arithmetic). A C program may contain �dangerous� constructs which under certain conditions
lead to runtime errors when executed. For instance evaluation of the expression u / v will
always produce a �oating point exception when v = 0 holds. Writing to an out-of-bound index
of an array may result in a segmentation fault, and it is dangerous even if it fails to do so
(other variables may be overwritten). The goal of this Frama-C plug-in is to detect a number
of such constructs, and to insert a corresponding logical annotation (a �rst-order property
over the variables of the construct) ensuring that, whenever this annotation is satis�ed before
execution of the statement containing the construct, the potential runtime error associated
with the expression will not happen. Annotation checking can be performed (at least partially)
by Frama-C value analysis plug-in [6], while more complicated properties may involve other
plug-ins and more user interaction.

At this point it is necessary to de�ne what one means by a �dangerous� construct. ISO C99
lists a number of unde�ned behaviors (the program construct can, at least in certain cases, be
erroneous), a number of unspeci�ed behaviors (the program construct can be interpreted in at
least two ways), and a list of implementation-de�ned behaviors (di�erent compilers and archi-
tectures implement di�erent behaviors). Constructs leading to such behaviors are considered
dangerous, even if they do not systematically lead to runtime errors. In fact an unde�ned
behavior must be considered as potentially leading to a runtime error, while unspeci�ed and
implementation-de�ned behaviors will most likely result in portability problems.

An example of an unde�ned behavior (for the C language) is signed integer over�ow, which
occurs when the (exact) result of a signed integer arithmetic expression can not be represented
in the domain of the type of the expressions. For instance, supposing that an int is 32-bits
wide, and thus has domain [-2147483648,2147483647], and that x is an int , the expression
x+1 performs a signed integer over�ow, and therefore has an unde�ned behavior, if and only if
x equals 2147483647. This is independent of the fact that for most (if not all) C compilers and
32-bits architectures, one will get x+1 = -2147483648 and no runtime error will happen. But
by strictly conforming to the C standard, one cannot assert that the C compiler will not in
fact generate code provoking a runtime error in this case, since it is allowed to do so. Also note
that from a security analysis point of view, an unde�ned behavior leading to a runtime error
classi�es as a denial of service (since the program terminates), while a signed integer over�ow
may very well lead to bu�er over�ows and execution of arbitrary code by an attacker. Thus
not getting a runtime error on an unde�ned behavior is not necessarily a desirable behavior.

On the other hand, note that a number of behaviors classi�ed as implementation-de�ned by
the ISO standard are quite painful to deal with in full generality. In particular, ISO C99
allows either sign and magnitude, two's complement or one's complement for representing
signed integer values. Since most if not all �modern� architectures are based on a two's

complement representation (and that compilers tend to use the hardware at their disposal),
it would be a waste of time not to build veri�cation tools by making such wide-ranging and
easily checkable assumptions. Therefore RTE uses the hypothesis that signed integers

have a two's complement representation.

8

1.3. OTHER ANNOTATIONS GENERATED

1.3 Other annotations generated

RTE may also generate annotations that are not related to runtime errors:

• absence of unsigned over�ows checking. Although unsigned over�ows are well-de�ned,
some plugins may wish to avoid them.

• generating call sites statement contracts, based on the called function's contract. This
is useful for modular veri�cation.

9

Chapter 2

Runtime error annotation generation

2.1 Integer operations

According to 6.2.5.9, operations on unsigned integers �can never over�ow� (as long as the
result is de�ned, which excludes division by zero): they are reduced modulo a value which
is one greater than the largest value of their unsigned integer type (typically 2n for n-bit
integers). So in fact, arithmetic operations on unsigned integers should really be understood
as modular arithmetic operations (the modulus being the largest value plus one).

On the other hand, an operation on signed integers might over�ow and this would pro-
duce an unde�ned behavior. Hence, a signed integer operation is only de�ned if its result
(as a mathematical integer) falls into the interval of values corresponding to its type (e.g.
[INT_MIN,INT_MAX] for int type, where the bounds INT_MIN and INT_MAX are de�ned in the
standard header limits.h). Therefore, signed arithmetic is true integer arithmetic as long as
intermediate results are within certain bounds, and becomes unde�ned as soon as a compu-
tation falls outside the scope of representable values of its type.

The full list of arithmetic and logic operations which might over�ow is presented hereafter.
Most of these over�ows produce unde�ned behaviors, but some of them are implementation
de�ned and indicated as such.

2.1.1 Addition, subtraction, multiplication

These arithmetic operations may not over�ow when performed on signed operands, in the
sense that the result must fall in an interval which is given by the type of the corresponding
expression and the macro-values de�ned in the standard header limits.h. A de�nition of this
�le can be found in the share directory of Frama-C.

type representable interval

signed char [SCHAR_MIN, SCHAR_MAX]

signed short [SHRT_MIN,SHRT_MAX]

signed int [INT_MIN,INT_MAX]

signed long int [LONG_MIN,LONG_MAX]

signed long long int [LLONG_MIN,LLONG_MAX]

Since RTE makes the assumption that signed integers are represented in 2's complement, the
interval of representable values also corresponds to [−2n−1, 2n−1 − 1] where n is the number

11

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

of bits used for the type (sign bit included, but not the padding bits if there are any). The
size in bits of a type is obtained through Cil.bitsSizeOf: typ -> int, which bases itself on
the machine dependency option of Frama-C. For instance by using -machdep x86_32, we have
the following:

type size in bits representable interval

signed char 8 [-128,127]

signed short 16 [-32768,32767]

signed int 32 [-2147483648,2147483647]

signed long int 32 [-2147483648,2147483647]

signed long long int 64 [-9223372036854775808,9223372036854775807]

Frama-C annotations added by plugins such as RTE may not contain macros since pre-
processing is supposed to take place beforehand (user annotations at the source level can
be taken into account by using the -pp-annot option). As a consequence, annotations are
displayed with big constants such as those appearing in this table.

Example 2.1 Here is a RTE-like output in a program involving signed long int with an

x86_32 machine dependency:

1

2 i n t main(vo i d)
3 {

4 s i g n ed long i n t lx, ly, lz;

5

6 /*@ a s s e r t
7 ((lx*ly <= 2147483647) &&

8 (lx*ly >= -2147483648));

9 */

10 lz = lx * ly;

11

12 r e t u r n 1;

13 }

The same program, but now annotated with an x86_64 machine dependency:

1

2 i n t main(vo i d)
3 {

4 s i g n ed long i n t lx, ly, lz;

5

6 /*@ a s s e r t
7 ((lx*ly <= 9223372036854775807) &&

8 (lx*ly >= -9223372036854775808));

9 */

10 lz = lx * ly;

11

12 r e t u r n 1;

13 }

The di�erence comes from the fact that signed long int is 32-bit wide for x86_32, and 64-bit

wide for x86_64.

2.1.2 Signed downcasting

Note that arithmetic operations usually involve arithmetic conversions. For instance, integer
expressions with rank lower than int are promoted, thus the following program:

12

2.1. INTEGER OPERATIONS

1 i n t main(vo i d)
2 {

3 s i g n ed char cx, cy, cz;

4

5 cz = cx + cy;

6 r e t u r n 1;

7 }

is in fact equivalent to:

1 i n t main(vo i d)
2 {

3 s i g n ed char cx, cy, cz;

4

5 cz = (s i g n ed char)((i n t)cx + (i n t)cy);
6 r e t u r n 1;

7 }

Since a signed over�ow can occur on expression (int)cx + (int)cy, the following annotation
is generated by the RTE plugin:

a s s e r t (((i n t)cx+(i n t)cy <= 2147483647) && ((i n t)cx+(i n t)cy >= -2147483648))

This is much less constraining than what one would want to infer, namely:

a s s e r t (((i n t)cx+(i n t)cy <= 127) && ((i n t)cx+(i n t)cy >= -128))

Actually the RTE plugin infers this second (stronger) assertion when treating the cast of the
expression to a signed char. Since the value represented by the expression cannot in general be
represented as a signed char, and following ISO C99 paragraph 6.3.1.3.3 (on downcasting to a
signed type), an implementation-de�ned behavior happens whenever the result falls outside the
range [-128,127]. Thus, with a single annotation, the RTE plugin prevents both an unde�ned
behavior (signed over�ow) and an implementation de�ned behavior (signed downcasting).

Note that the annotation for signed downcasting always entails the annotation for signed
over�ow. The RTE plugin makes the choice of generating an annotation only for the strongest
one. The selection of options -rte-no-all -rte-signed can be used in order to prevent signed
downcasting annotation while keeping signed over�ow annotation. In that case, the signed
over�ow annotation is generated.

2.1.3 Unary minus

The only case when a (signed) unary minus integer expression -expr over�ows is when expr

is equal to the minimum value of the integer type. Thus the generated assertion is as follows:

1 i n t ix;

2 // some code

3 //@ a s s e r t (ix != -2147483648);

4 ix = - ix;

2.1.4 Division and modulo

As of ISO C99 paragraph 6.5.5, an unde�ned behavior occurs whenever the value of the second
operand of operators / and % is zero. The corresponding runtime error is usually referred to
as �division by zero�. This may happen for both signed and unsigned operations.

1 uns i gned i n t ux;

2 // some code

3 //@ a s s e r t (ux != 0);

4 ux = 1 / ux;

13

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

In 2's complement representation and for signed division, dividing the minimum value of an
integer type by −1 over�ows , since it would give the maximum value plus one. There is no
such rule for signed modulo, since the result would be zero, which does not over�ow.
1 i n t x,y,z;

2 // some code

3 //@ a s s e r t (x != 0);

4 //@ a s s e r t !(((x = -1) && (y = -2147483648)));

5 z = y / x;

2.1.5 Bitwise shift operators

ISO C99 paragraph 6.5.7 de�nes unde�ned and implementation de�ned behaviors for bitwise
shift operators. The type of the result is the type of the promoted left operand.

The unde�ned behaviors are the following:

• the value of the right operand is negative or is greater than or equal to the width of the
promoted left operand:
1 i n t x,y,z;

2

3 //@ a s s e r t ((y >= 0) && (y < 32));

4 z = x << y; // same annotation for z = x >> y;

• in E1 << E2, E1 has signed type and negative value:
1 i n t x,y,z;

2

3 //@ a s s e r t (x >= 0);

4 z = x << y;

• in E1 << E2, E1 has signed type and nonnegative value, but the value of the result
E1× 2E2 is not representable in the result type:
1 i n t x,y,z;

2

3 //@ a s s e r t (x << y <= 2147483647);

4 z = x << y;

There is also an implementation de�ned behavior if in E1 >> E2, E1 has signed type and
negative value. This case corresponds to the arithmetic right-shift, usually de�ned as signed
division by a power of two, with two possible implementations: either by rounding the result
towards minus in�nity (which is standard) or by rounding towards zero. RTE generates an
annotation for this implementation de�ned behavior.
1 i n t x,y,z;

2

3 //@ a s s e r t (x >= 0);

4 z = x << y;

Example 2.2 The following example summarizes RTE generated annotations for bitwise

shift operations, with -machdep x86_64:

1 l ong x,y,z;

2

3 //@ a s s e r t ((y >= 0) && (y < 64));

4 //@ a s s e r t (x<<y <= 9223372036854775807);

5 //@ a s s e r t (x >= 0);

6 z = x << y;

7

8 //@ a s s e r t ((y >= 0) && (y < 64));

9 //@ a s s e r t (x >= 0);

10 z = x >> y;

14

2.2. LEFT-VALUES ACCESS

2.2 Left-values access

Dereferencing a pointer is an unde�ned behavior if:

• the pointer has an invalid value: null pointer, misaligned address for the type of object
pointed to, address of an object after the end of its lifetime (see ISO C99 paragraph
6.5.3.2.4) ;

• the pointer points one past the last element of an array object: such a pointer has a
valid value, but should not be dereferenced (ISO C99 paragraph 6.5.6.8).

Since an array subscripting E1[E2] is identical to (*((E1) + (E2))) (ISO C99 paragraph
6.5.2.1.2), this �invalid access� unde�ned behavior naturally extends to array indexing.

The RTE plugin generates annotations to prevent this type of unde�ned behavior in a system-
atic way. It does so by deferring the check to the ACSL built-in predicate valid(p): valid(s)
(where s is a set of terms) holds if and only if dereferencing any p ∈ s is safe (i.e. points to a
safely allocated memory location).

Pointers to functions are not treated by RTE since, as of the time this manual was written,
there is no predicate in ACSL expressing that such a pointer actually points to an existing
function.

Example 2.3 An example of RTE annotation generation for checking the validity of each

memory access:

1 e x t e r n vo i d f(i n t * p);

2

3 i n t main(vo i d)
4 {

5 i n t *p ;

6 i n t tab [10] ;

7

8 //@ a s s e r t (\ v a l i d (p));
9 *p = 3;

10

11 //@ a s s e r t (\ v a l i d (&tab [3]));
12 //@ a s s e r t (\ v a l i d (p));
13 tab [3] = *p;

14

15 //@ a s s e r t (rte: \ v a l i d (p+1));
16 //@ a s s e r t (rte: \ v a l i d ((i n t *)tab));

17 *(p + 1) = tab [0];

18

19 //@ a s s e r t (\ v a l i d ((i n t *)tab));

20 f(tab); // equivalent to f(&tab [0])

21

22 r e t u r n 0;

Note that in the call f(tab), the implicit conversion from array tab to a pointer to the

beginning of the array &tab[0] introduces a pointer dereferencing and thus the annotation

\valid ((int*) tab), which is equivalent to \valid (&tab[0]).

Example 2.4 An example of memory access validity annotation generation for structured

types.

1 s t r u c t S {

2 i n t val;

3 s t r u c t S *next;

4 };

15

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

5

6 s t r u c t C {

7 s t r u c t S cell [5];

8 i n t (*f)(i n t);
9 };

10

11 s t r u c t ArrayStruct {

12 s t r u c t C data [10];
13 };

14

15 i n t main()

16 {

17 i n t a;

18 s t r u c t ArrayStruct buff;

19 // some code

20

21 //@ a s s e r t (\ v a l i d (buff. data [1]. cell [2]. next));
22 //@ a s s e r t (\ v a l i d (&buff. data [1]));
23 //@ a s s e r t (\ v a l i d (&buff. data [1]. cell [2]));
24 a = (buff. data [1]. cell [2]. next)->val;
25

26 //@ a s s e r t (\ v a l i d (&buff. data [0]));
27 (*(buff. data [0].f))(a);
28

29 r e t u r n 0;

30 }

There is no annotation generated for the validity of the �eld buff.data[0].f because it is a

function pointer. RTE emits a warning in such a case.

2.3 Unsigned over�ow annotations

ISO C99 states that unsigned integer arithmetic is modular: over�ows do not occur (paragraph
6.2.5.9 of ISO C99). On the other hand, most �rst-order solvers used in deductive veri�cation
(excluding dedicated bit-vector solvers such as [2]) either provide only non-modular arithmetic
operators, or are much more e�cient when no modulo operation is used besides classic full-
precision arithmetic operators. Therefore RTE o�ers a way to generate assertions preventing
unsigned arithmetic operations to over�ow (i.e. involving computation of a modulo).

Operations which are considered by RTE regarding unsigned over�ows are addition, subtrac-
tion, multiplication, and left shift. Negation (unary minus) and right shift are not considered.
The generated assertion requires the result of the operation (in non-modular arithmetic) to
be less than the maximal representable value of its type, and nonnegative (for subtraction).

Proviso: assertion generation for unsigned over�ows is only available for unsigned integer
types whose bit size is at most 32. In particular, in order to be able to treat 64 bits integers,
it would be necessary to use big constants such as 264 − 1 in generated assertions, which is a
problem for Cil [1] at the time of writing this manual.

Example 2.5

The following �le only contains unsigned arithmetic operations: no assertion is generated by

RTE by using options -rte -rte-all.

1 uns i gned i n t f(uns i gned i n t a, uns i gned i n t b)

2 {

3 uns i gned i n t x, y, z;

4 x = a << 3;

5 y = b * (uns i gned i n t)2;

6 z = x - y;

7 r e t u r n (z);

8 }

16

2.4. EXPRESSIONS NOT CONSIDERED BY RTE

To generate assertions w.r.t. unsigned over�ows, options -rte -rte-unsigned-ov must be used.

Here is the resulting �le on a 32 bits target architecture (-machdep x86_32):

1

2 uns i gned i n t f(uns i gned i n t a, uns i gned i n t b)

3 {

4 uns i gned i n t x, y, z;

5 /*@ a s s e r t rte: (a<<3 <= 4294967295); */

6 x = a << 3;

7 /*@ a s s e r t rte: (b*(uns i gned i n t)2 <= 4294967295); */

8 y = b * (uns i gned i n t)2;

9 /*@ a s s e r t rte: (x-y >= 0); */

10 z = x - y;

11 r e t u r n (z);

12 }

2.4 Expressions not considered by RTE

An expression which is the operand of a sizeof (or __alignof, a GCC operator parsed by Cil)
is ignored by RTE, as are all its sub-expressions. This is an approximation, since the operand
of sizeof may sometimes be evaluated at runtime, for instance on variable sized arrays: see
the example in ISO C99 paragraph 6.5.3.4.7. Still, the transformation performed by Cil on
the source code actually ends up with a statically evaluated sizeof (see the example below).
Thus the approximation performed by RTE seems to be on the safe side.

Example 2.6 Initial source code:

1 #i n c l u d e <stddef.h>

2

3 size_t fsize3(i n t n)

4 {

5 cha r b[n + 3]; // variable length array

6 r e t u r n s i z e o f b; // execution time sizeof

7 }

8

9 i n t main()

10 {

11 r e t u r n fsize3 (5);

12 }

Output obtained with frama-c -print with gcc preprocessing:

1 t y p ed e f uns i gned i n t size_t;

2 /* compiler builtin:

3 void *__builtin_alloca(unsigned int) ; */

4 size_t fsize3(i n t n)

5 {

6 cha r *b ;

7 uns i gned i n t __lengthofb ;

8 size_t __retres ;

9 { /* undefined sequence */

10 __lengthofb = (uns i gned i n t)(n + 3);

11 b = (cha r *) __builtin_alloca(s i z e o f (*b) * __lengthofb);

12 }

13 __retres = s i z e o f (*b) * __lengthofb;

14 r e t u r n (__retres);

15 }

16

17 i n t main(vo i d)
18 {

19 i n t tmp ;

20 tmp = (i n t)fsize3 (5);

21 r e t u r n (tmp);

22 }

17

CHAPTER 2. RUNTIME ERROR ANNOTATION GENERATION

2.5 Unde�ned behaviors not covered by RTE

One should be aware that RTE only covers a small subset of all possible unde�ned behaviors
(see annex J.2 of [3] for a complete list).

In particular, unde�ned behaviors related to the following operations are not considered:

• Use of relational operators for the comparison of pointers that do not point to the same
aggregate or union (ISO C99 6.5.8)

• Demotion of a real �oating type to another type producing a value outside of the rep-
resentable range (ISO C99 6.3.1.5)

• Conversion between two pointer types produces a result that is incorrectly aligned
(ISO C99 6.3.2.3)

• Use of a pointer to call a function whose type is not compatible with the pointed-to
type (ISO C99 6.3.2.3)

18

Chapter 3

Precondition annotation generation

Using ACSL, the Frama-C frameworks allows the user to write contracts for C functions.
These contracts contain in particular:

• requires clauses R1, R2, . . . (preconditions),

• ensures clauses E1, E2, . . . (postconditions),

• assigns clauses A1, A2, . . . (set of locations assigned by the function).

The intended behavior is that any caller must make sure that the function is called in a state
where the required property R1 && R2 && . . . holds, to ensure that E1 && E2 && . . . holds in
the state returned by the function call. Contracts may contain several named behaviors as
well, see the ACSL manual.

For a function having a contract, the RTE plugin can generate a statement annotation corre-
sponding to the contract at each call site. It does so by substituting formal parameters of the
contract with actual parameters at the call site. The generated statement annotation ensures
that the function is called in the proper state and speci�es its return state.

Example 3.1

Consider function f with the following contract:

1 /*@ e n s u r e s (\ r e s u l t == -\at (x,Old));
2 b eha v i o r pos:

3 assumes (x >= 0);

4 e n s u r e s (\ r e s u l t <= 0);

5 a s s i g n s *y;

6 b eha v i o r neg:

7 assumes (x < 0);

8 e n s u r e s (\ r e s u l t > 0);

9 a s s i g n s \noth ing ;
10 */

11 i n t f(i n t x , i n t *y)

12 {

13 i n t __retres ;

14 i f (x >= 0) { *y = x; }

15 __retres = - x;

16 r e t u r n (__retres);

17 }

Here is an example of a statement behavior generated by RTE on a call to f:

19

CHAPTER 3. PRECONDITION ANNOTATION GENERATION

1 i n t main(vo i d)
2 {

3 i n t a, b ,c;

4 a = 5;

5 /*@ b eha v i o r rte_0:

6 e n s u r e s (b == -\at (a,Old));
7 a s s i g n s b;

8 b eha v i o r rte_1:

9 assumes (a >= 0);

10 e n s u r e s (b <= 0);

11 a s s i g n s b, *(&c);

12 b eha v i o r rte_2:

13 assumes (a < 0);

14 e n s u r e s (b > 0);

15 a s s i g n s b;

16 */

17 b = f(a,& c);

18 r e t u r n (b + c);

19 }

The generated behaviors names are rte_0, rte_1, rte_2). Notice that assigns clauses are

also taken into account, and that the formal \result is substituted with the assigned left-value.

The main restriction is that the RTE plugin only performs syntactic detection of function
calls: functions called through pointers are warned about but no statement annotation is
generated. This is unlikely to change until ACSL introduces contracts on function pointers.

20

Chapter 4

Plugin options

Enabling RTE plugin is done by adding -rte on the command-line of Frama-C. The plugin
then selects every C function which is in the set de�ned by the -rte-select: if no explicit
set of functions is provided by the user, all C functions de�ned in the program are selected.
Selecting the kind of annotations which will be generated is performed by using other RTE
options (see �g. 4.1 for a summary).

Pretty-printing the output of RTE and relaunching the plugin on the resulting �le will generate
duplicated annotations, since the plugin does not check existing annotations before generation.
This behaviour does not happen if RTE is used in the context of a Frama-C project [4]: in that
case, the set of RTE options used for each C function will be recorded in internal states. Thus
a function selected for annotation will only be annotated by RTE if at least one generation
option has changed. If the function is to be annotated with a di�erent set of options, it occurs
after discarding existing annotations generated by RTE. This ensures that, for a given C
function and in the context of a Frama-C project, the generated annotations only depend
on the set of options that have been used the last time RTE has been launched with this C
function selected. It is possible to annotate each C function with a di�erent set of options.

Option -rte-all has a special behavior: if selected (which is the default case), the options
-rte-signed, -rte-downcast, -rte-div, -rte-mem and -rte-precond are also selected, irrespec-
tive of the corresponding command-line option. For instance, annotations for division by zero
will be generated even if the user explicitly speci�es -rte-no-div, unless -rte-no-all is also
selected.

The special behavior of -rte-all implies that RTE generates by default all runtime-errors
(more precisely, unde�ned and implementation-de�ned behaviors) and precondition annota-
tions it handles. The user should explicitly add -rte-unsigned-ov (not entailed by -rte-all)
to generated unsigned over�ows annotations, which are valid as of ISO C99.

On the other hand, to generate only a subset of possible annotations, one has to use -rte-no-all
in conjunction with other positive options. For instance, used in conjunction with -rte-precond

alone, only precondition annotations would be generated. Adding -rte-mem, annotations for
the validity of memory access would also be generated.

Some examples:

• frama-c -rte -rte-select f,g -rte-no-all -rte-precond: only generate precondition
annotations, and only for call-sites found in functions f and g.

• frama-c -rte -rte-no-all -rte-unsigned-ov: only generated annotations for unsigned
over�ows, for the whole C program.

21

CHAPTER 4. PLUGIN OPTIONS

Option Type (Default) Description

-rte boolean (false) Enable RTE plugin

-rte-all boolean (true) Enable all runtime-errors annotations, except for
unsigned over�ows (supersedes all -rte-no)

-rte-print boolean (false) Pretty print the annotated code

-rte-unsigned-ov boolean (false) Generate annotations for unsigned over�ows
(not entailed by -rte-all)

-rte-signed boolean (false) Generate annotations for signed over�ows

-rte-downcast boolean (false) Generate annotations for signed integer down-
cast

-rte-div boolean (false) Generate annotations for division by zero

-rte-mem boolean (false) Generate annotations for validity of left-values
access

-rte-const boolean (true) Generate status for annotation through constant
folding

-rte-precond boolean (false) Generate contract-based statement behaviors
based at call sites

-rte-warn boolean (true) Emit warning on broken annotations

-rte-select set of function (all) Run plugin on a subset of C functions

Table 4.1: RTE options

• frama-c -rte -rte-unsigned-ov -rte-no-const: generate all possible annotations (un-
signed over�ows included), but do not try to evaluate their status through constant
folding.

Note that -rte-print is almost equivalent to -print: the only di�erence is that in the former
case, the resulting C code is pretty printed only if -rte is enabled.

22

BIBLIOGRAPHY

Bibliography

[1] Berkeley University. The C Intermediate Language (CIL) library. http://manju.cs.

berkeley.edu/cil/.

[2] Armin Biere. Boolector. http://fmv.jku.at/boolector/.

[3] International Organization for Standardization (ISO). The ANSI C standard (C99). http:
//www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf.

[4] Julien Signoles with Loïc Correnson and Virgile Prevosto. Plug-in Development Guide.
CEA List, Software Reliability Laboratory.

[5] Loïc Correnson, Zaynah Dargaye, Anne Pacalet. WP plug-in Manual. CEA List, Software
Reliability Laboratory.

[6] Pascal Cuoq with Virgile Prevosto. Frama-C's value analysis plug-in. CEA List, Software
Reliability Laboratory. http://frama-c.com/download/frama-c-value-analysis.pdf.

23

http://manju.cs.berkeley.edu/cil/
http://manju.cs.berkeley.edu/cil/
http://fmv.jku.at/boolector/
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1124.pdf
http://frama-c.com/download/frama-c-value-analysis.pdf

	Introduction
	RTE plugin
	Runtime errors
	Other annotations generated

	Runtime error annotation generation
	Integer operations
	Addition, subtraction, multiplication
	Signed downcasting
	Unary minus
	Division and modulo
	Bitwise shift operators

	Left-values access
	Unsigned overflow annotations
	Expressions not considered by RTE
	Undefined behaviors not covered by RTE

	Precondition annotation generation
	Plugin options
	Bibliography

