
WP Plug-in Manual
For Frama-C 28.0 beta (Nickel)

Patrick Baudin, François Bobot, Loïc Correnson, Zaynah Dargaye, Allan Blanchard

Work licensed under Creative Commons BY licence
https://creativecommons.org/licenses/by/4.0/

© 2010-2023 CEA-List

https://creativecommons.org/licenses/by/4.0/

Contents

Foreword 4

1 Introduction 5

1.1 Installation . 6

1.2 Tutorial . 6

1.3 Weakest Preconditions . 9

1.4 Memory Models . 10

1.5 Arithmetic Models . 11

1.6 Limitations & Roadmap . 12

2 Using the WP Plug-in 14

2.1 Supported annotations . 15

2.2 Graphical User Interface . 16

2.3 Interactive Proof Editor . 18
2.3.1 Display Modes . 18
2.3.2 Tactics . 19
2.3.3 Term Composer . 19
2.3.4 Proof Script . 19
2.3.5 Replaying Scripts . 20
2.3.6 Tracking Scripts . 21
2.3.7 Strategies (DEPRECATED) . 21
2.3.8 General Tactics . 22
2.3.9 Integers & Bit-wised Tactics . 24
2.3.10 Domain Specific Tactics . 26
2.3.11 Custom Tactics and Strategies . 27

2

CONTENTS

2.4 Command Line Options . 31
2.4.1 Goal Selection . 31
2.4.2 Program Entry Point . 32
2.4.3 Model Selection . 32
2.4.4 Computation Strategy . 33
2.4.5 Smoke Tests . 36
2.4.6 Trigger Generation . 36
2.4.7 Qed Simplifier Engine . 36
2.4.8 Prover Selection . 37
2.4.9 Generated Proof Obligations . 39
2.4.10 Additional Proof Libraries . 40
2.4.11 Linking ACSL Symbols to External Libraries 40
2.4.12 Proof Session & Cache . 42
2.4.13 Proof Obligation Reports . 43
2.4.14 Persistent Options . 43

2.5 Proof Strategies . 43

2.6 Structure of JSON Scripts . 46

2.7 Structure of JSON Reports . 48

2.8 Structure of Report Templates . 49

3 WP Models 52

3.1 Language of Proof Obligations . 52

3.2 The Hoare Memory Model . 53

3.3 Memory Models with Pointers . 53

3.4 Hoare Variables mixed with Pointers . 54

3.5 Hoare Variables for Reference Parameters . 54

3.6 Mixed models hypotheses . 55

3.7 The Typed Memory Model . 55

3.8 The Caveat Memory Model . 56

4 WP Simplifier 57

4.1 Logic Normalizations . 57

4.2 Simplifier Engine (Qed) . 57

4.3 Efficient WP Computation . 58

5 Builtins 60

5.1 General Simplifications . 60

5.2 ACSL Built-ins . 60

5.3 Custom Extensions . 63

3

Foreword

This is the user manual of the WP plug-in of Frama-C1. The content of this document corresponds to
the version 28.0 beta (Nickel), released on October 26, 2023, of Frama-C.

Acknowledgements

This project has received funding from the French ANR project U3CAT (08-SEGI-021-01).

1 http://frama-c.com

4

http://frama-c.com

1Introduction

This document describes the Frama-C/WP plug-in that uses external decision procedures to prove ACSL
annotations of C functions.

The WP plug-in is named after Weakest Precondition calculus, a technique used to prove program
properties initiated by Hoare [Hoa69], Floyd [Flo67] and Dijkstra [Dij68]. Recent tools implement this
technique with great performance, for instance Boogie [Lei08] and Why [Fil03]. There is already a
Frama-C plug-in, Jessie [MM09], developed at INRIA, that implements a weakest precondition calculus
for C programs by compiling them into the Why language.

The WP plug-in is a novel implementation of such a Weakest Precondition calculus for annotated C
programs, which focuses on parametrization w.r.t the memory model. It is a complementary work to the
Jessie plug-in, which relies on a separation memory model in the spirit of Burstall’s work [Bur72]. The
Jessie memory model is very efficient for a large variety of well structured C-programs. However, it does
not apply when low-level memory manipulations, such as heterogeneous casts, are involved. Moreover,
Jessie operates by compiling the C program to Why, a solution that prevents the user from combining
weakest precondition calculus with other techniques, such as the Eva analysis plug-in.

The WP plug-in has been designed with cooperation in mind. That is, you may use WP for proving
some annotations of your C programs, and prove others with different plug-ins. The recent improvements
of the Frama-C kernel are then responsible for managing such partial proofs and consolidating them
altogether.

This manual is divided into three parts. This first chapter introduces the WP plug-in, the Weakest
Precondition calculus and Memory Models. Then, Chapter 2 details how to use and tune the plug-in
within the Frama-C platform. Chapter 3 provides a description for the included memory models. We
present in Chapter 4 the simplifier module and the efficient weakest precondition engine implemented
in the WP plug-in. Finally, in Chapter 5, we provide additional information on the supported ACSL
built-in symbols.

5

1.1. INSTALLATION

1.1 Installation

The WP plug-in is distributed with the Frama-C platform. However, it also requires the Why-3 platform
and you should install at least one external prover in order to fulfill proof obligations. An easy choice is
to install the Alt-Ergo theorem prover originally developed at inria and now by OcamlPro1. When
using the Opam package manager, these tools are automatically installed with Frama-C.

When updating or installing Why-3, the following command should be run to detect available provers:

rm -f ~/.why3.conf ; why3 config detect

See the documentation of Why-3 to install other provers.

1.2 Tutorial

Consider the very simple example of a function that swaps the values of two integers passed by reference:
File swap.c

void swap(int *a,int *b)
{

int tmp = *a ;

*a = *b ;

*b = tmp ;
return ;

}

A simple, although incomplete, ACSL contract for this function can be:
File swap1.h

/*@ ensures A: *a == \old(*b) ;
@ ensures B: *b == \old(*a) ;
@*/

void swap(int *a,int *b) ;

You can run wp on this example with:
> frama-c -wp swap.c swap1.h
frama-c -wp [...]
[kernel] Parsing manual.i (no preprocessing)
[kernel] Parsing working_dir/swap.c (with preprocessing)
[kernel] Parsing working_dir/swap1.h (with preprocessing)
[wp] Running WP plugin...
[wp] [Valid] Goal swap_exits (Cfg) (Unreachable)
[wp] [Valid] Goal swap_terminates (Cfg) (Trivial)
[wp] Warning: Missing RTE guards
[wp] 2 goals scheduled
[wp] [Valid] typed_swap_ensures_A (Alt-Ergo) (Cached)
[wp] [Valid] typed_swap_ensures_B (Qed)
[wp] Proved goals: 4 / 4
Terminating: 1
Unreachable: 1
Qed: 1
Alt-Ergo: 1

--

1 Alt-Ergo: https://alt-ergo.ocamlpro.com/

6

https://alt-ergo.ocamlpro.com/

1.2. TUTORIAL

Functions WP Alt-Ergo Total Success
swap 1 1 2 100%

--

As expected, running WP for the swap contract results in two proof obligations (one for each
’ensures’ clause). The first one is discharged internally by the Qed simplifier of WP, the second one is
terminated by Alt-Ergo.

You should notice the warning “Missing RTE guards”, emitted by the WP plug-in. That is, the
weakest precondition calculus implemented in WP relies on the hypothesis that your program is runtime-
error free. In this example, the swap function dereferences its two parameters, and these two pointers
should be valid.

By default, the WP plug-in does not generate any proof obligation for verifying the absence of
runtime errors in your code. Absence of runtime errors can be proved with other techniques, for instance
by running the Eva plug-in, or by generating all the necessary annotations with the RTE plug-in.

The simple contract for the swap function above is not strong enough to prevent runtime errors:
pointers given as parameters might be invalid. Consider now the following new contract for swap:

File swap2.h

/*@ requires \valid(a) && \valid(b);
@ ensures A: *a == \old(*b) ;
@ ensures B: *b == \old(*a) ;
@ assigns *a,*b ;
@*/

void swap(int *a,int *b) ;

For simplicity, the WP plug-in is able to run the RTE plug-in for you, through the -wp-rte option.
Now, WP reports that the function swap completely fulfills its contract, without any warnings regarding
potential residual runtime errors:

> frama-c -wp -wp-rte swap.c swap2.h
frama-c -wp -wp-rte [...]
[kernel] Parsing manual.i (no preprocessing)
[kernel] Parsing working_dir/swap.c (with preprocessing)
[kernel] Parsing working_dir/swap2.h (with preprocessing)
[wp] Running WP plugin...
[rte:annot] annotating function swap
[wp] [Valid] Goal swap_exits (Cfg) (Unreachable)
[wp] [Valid] Goal swap_terminates (Cfg) (Trivial)
[wp] 8 goals scheduled
[wp] [Valid] typed_swap_ensures_A (Alt-Ergo) (Cached)
[wp] [Valid] typed_swap_ensures_B (Qed)
[wp] [Valid] typed_swap_assert_rte_mem_access (Alt-Ergo) (Cached)
[wp] [Valid] typed_swap_assert_rte_mem_access_2 (Qed)
[wp] [Valid] typed_swap_assert_rte_mem_access_3 (Alt-Ergo) (Cached)
[wp] [Valid] typed_swap_assert_rte_mem_access_4 (Qed)
[wp] [Valid] typed_swap_assigns_part1 (Qed)
[wp] [Valid] typed_swap_assigns_part2 (Qed)
[wp] Proved goals: 10 / 10
Terminating: 1
Unreachable: 1
Qed: 5
Alt-Ergo: 3

--
Functions WP Alt-Ergo Total Success
swap 5 3 8 100%

--

7

1.2. TUTORIAL

We have finished the job of validating this simple C program with respect to its specification, as
reported by the report plug-in that displays a consolidation status of all annotations:

> frama-c -wp-verbose 0 [...] -then -report
frama-c -wp -wp-rte [...]
[rte:annot] annotating function swap
--
Functions WP Alt-Ergo Total Success
swap 5 3 8 100%

--
[report] Computing properties status...

--
--- Properties of Function ’swap’
--

[Valid] Post-condition ’A’
by Wp.typed.

[Valid] Post-condition ’B’
by Wp.typed.

[Valid] Exit-condition (generated)
by Unreachable Annotations.

[Valid] Termination-condition (generated)
by Trivial Termination.

[Valid] Assigns (file working_dir/swap2.h, line 4)
by Wp.typed.

[Valid] Assertion ’rte,mem_access’ (file working_dir/swap.c, line 3)
by Wp.typed.

[Valid] Assertion ’rte,mem_access’ (file working_dir/swap.c, line 4)
by Wp.typed.

[Valid] Assertion ’rte,mem_access’ (file working_dir/swap.c, line 4)
by Wp.typed.

[Valid] Assertion ’rte,mem_access’ (file working_dir/swap.c, line 5)
by Wp.typed.

[Valid] Default behavior
by Frama-C kernel.

--
--- Status Report Summary
--

10 Completely validated
10 Total

--

8

1.3. WEAKEST PRECONDITIONS

1.3 Weakest Preconditions

The principles of weakest precondition calculus are quite simple in essence. Given a code annotation of
your program, say, an assertion Q after a statement stmt, the weakest precondition of P is by definition
the “simplest” property P that must be valid before stmt such that Q holds after the execution of stmt.

Hoare triples. In mathematical terms, we denote such a property by a Hoare triple:

{P} stmt {Q}

which reads: “whenever P holds, then after running stmt, Q holds”.
Thus, we can define the weakest precondition as a function wp over statements and properties such

that the following Hoare triple always holds:

{wp(stmt, Q)} stmt {Q}

For instance, consider a simple assignment over an integer local variable x; we have:

{x + 1 > 0} x = x + 1; {x > 0}

It should be intuitive that in this simple case, the weakest precondition for this assignment of a
property Q over x can be obtained by replacing x with x + 1 in Q. More generally, for any statement
and any property, it is possible to define such a weakest precondition.

Verification. Consider now function contracts. We basically have pre-conditions, assertions and
post-conditions. Say function f has a precondition P and a post condition Q, we now want to prove
that f satisfies its contract, which can be formalized by:

{P} f {Q}

Introducing W = wp(f, Q), we have by definition of wp:

{W} f {Q}

Suppose now that we can prove that precondition P entails weakest precondition W ; we can then
conclude that P precondition of f always entails its postcondition Q. This proof can be summarized by
the following diagram:

(P =⇒W) {W} f {Q}
{P} f {Q}

This is the main idea of how to prove a property by weakest precondition computation. Consider an
annotation Q, compute its weakest precondition W across all the statements from Q up to the beginning
of the function. Then, submit the property P =⇒W to a theorem prover, where P are the preconditions
of the function. If this proof obligation is discharged, then one may conclude the annotation Q is valid
for all executions.

Termination. We must point out a detail about program termination. Strictly speaking, the weakest
precondition of property Q through statement stmt should also ensure termination and execution without
runtime errors.

When the terminates clause is specified in function contracts, WP generates proof obligations to
make sure that all loops have loop variants and that all function calls terminate whenever necessary (thus
requiring decreases clause for recursive functions). Furthermore, exit behaviors of a function are
correctly handled by WP. More details about proof of termination in WP are provided in Section 2.4.4.

9

1.4. MEMORY MODELS

Regarding runtime errors, the proof obligations generated by WP assume your program never raises
any of them. As illustrated in the short tutorial example of section 1.2, you should enforce the absence
of runtime errors on your own, for instance by running the Eva plug-in or the RTE one and proving the
generated assertions.

1.4 Memory Models

The essence of a weakest precondition calculus is to translate code annotations into mathematical
properties. Consider the simple case of a property about an integer C-variable x:

x = x+1;
//@ assert P: x >= 0 ;

We can translate P into the mathematical property P (X) = X ≥ 0, where X stands for the value of
variable x at the appropriate program point. In this simple case, the effect of statement x=x+1 over P
is actually the substitution X 7→ X + 1, that is X + 1 ≥ 0.

The problem when applying weakest precondition calculus to C programs is dealing with pointers.
Consider now:

p = &x ;
x = x+1;
//@ assert Q: *p >= 0 ;

It is clear that, taking into account the aliasing between *p and x, the effect of the increment of x
cannot be translated by a simple substitution of X in Q.

This is where memory models come to rescue.
A memory model defines a mapping from values inside the C memory heap to mathematical terms.

The WP has been designed to support different memory models. There are currently three memory
models implemented, and we plan to implement new ones in future releases. Those three models are all
different from the one in the Jessie plug-in, which makes WP complementary to Jessie.

Hoare model. A very efficient model that generates concise proof obligations. It simply maps each C
variable to one pure logical variable.
However, the heap cannot be represented in this model, and expressions such as *p cannot be
translated at all. You can still represent pointer values, but you cannot read or write the heap
through pointers.

Typed model. The default model for WP plug-in. Heap values are stored in several separated global
arrays, one for each atomic type (integers, floats, pointers) and an additional one for memory
allocation. Pointer values are translated into an index into these arrays.
In order to generate reasonable proof obligations, the values stored in the global array are not the
machine ones, but the logical ones. Hence, all C integer types are represented by mathematical
integers and each pointer type to a given type is represented by a specific logical abstract datatype.
A consequence of having separated arrays is that heterogeneous casts of pointers cannot be
translated in this model. For instance within this memory model, you cannot cast a pointer to
int into a pointer to char, and then access the internal representation of the original int value
into memory.
However, variants of the Typed model enable limited forms of casts. See chapter 3 for details.

Bytes model. (Not Implemented Yet). This is a low-level memory model, where the heap is
represented as a wide array of bytes. Pointer values are exactly translated into memory addresses.
Read and write operations from/to the heap are translated into manipulation of ranges of bits in
the heap.

10

1.5. ARITHMETIC MODELS

This model is very precise in the sense that all the details of the program are represented. This
comes at the cost of huge proof obligations that are very difficult to discharge by automated
provers, and generally require an interactive proof assistant.

Thus, each memory model offers a different trade-off between expressive power and ease of discharging
proof obligations. The Hoare memory model is very restricted but generates easy proof obligations,
Bytes is very expressive but generates difficult proof obligations, and Typed offers an intermediate
solution.

Chapter 3 is dedicated to a more detailed description of memory models, and how the WP plug-in
uses and combines them to generate efficient proof obligations.

1.5 Arithmetic Models

The WP plug-in is able to take into account the precise semantics of integral and floating-point operations
of C programs. However, doing so generally leads to very complex proof obligations.

For tackling this complexity, the WP plug-in relies on several arithmetic models:

Machine Integer Model: The kernel options are used to determine if an operation is allowed to
overflow or not. In case where overflows or downcasts are forbidden, the model uses mathematical
operators in place of modulo ones to perform the computations.
For example, with kernel default settings, addition of regular signed int values is interpreted
by mathematical addition over unbounded integers ; and the addition of two unsigned int
is interpreted by the addition modulo 232.
The user shall set the kernel options -(no)-warn-xxx to precisely tune the model. Using -rte
or -wp-rte will generate all the necessary assertions to be verified.

Natural Model: integer operations are performed on mathematical integers. In ACSL, explicit conver-
sions between different integer types are still translated with modulo, though. Size of integers is
also removed from type constrained, which avoids provers to run into deep exploration of large
integer domains. Only signed-ness is kept from type constraints.
Except for the lesser constrained type assumptions, this model behaves like the machine integer one
when all kernel options -warn-xxx are set. However, the model does not modifies them. Hence,
using -rte or -wp-rte will generate a warning if some annotation might be not generated.

Float Model: floating-point values are represent in a special theory with dedicated operations over
float and double values and conversion from and to their real representation via rounding,
as defined by the C/ACSL semantics.
Although correct with respect to the IEEE specifications, this model still provides very little
support for proving properties with automated provers. You may add additional properties using
drivers as explained later.

Real Model: floating-point operations are transformed on reals, with no rounding. This is completely
unsound with respect to C and IEEE semantics. There is no way of recovering a correct or partial
property from the generated proof obligations on floating-point operations with this model.

Remark: with all models, there are conditions to meet for WP proofs to be correct. Depending on the
model used and the kernel options, those conditions may change. WP do not generate proof obligations
for runtime errors on its own. Instead, it can discharge the annotations generated by the Eva analysis
plug-in, or by the RTE plug-in. Consider also using -wp-rte option.

11

1.6. LIMITATIONS & ROADMAP

1.6 Limitations & Roadmap

The ambition of WP plug-in is to cover as many ACSL features as possible. However, some of them are
still not available yet, because of lack of manpower or more fundamental reasons. This section provides
an overview of those limitations, with roadmap indications: easy means that support could be provided
on demand, medium means that significant manpower is required to implement the feature and hard
means that a mid-term research project would be required. This list of limitations is probably not
exhaustive (yet) and will be maintained over future versions of Frama-C/WP.

Global invariants. Not implemented yet (easy).

Type invariants. Type invariants requires to be coupled with new memory models and some memory
region analysis (hard).

Model fields. This ACSL feature is generally coupled with type invariants and global invariants, hence
it is not implemented yet. From a practical point of view, we think that ghost fields with logic
types would be very complementary and easier to use. We are waiting for challenging use cases to
implement these features (medium).

Statement contracts. No more supported since Frama-C 23 (Vanadium) because of unsoundness bugs
to be fixed and ACSL restrictions. Support shall be restored on a mid-term basis (easy).

Non-natural loops. Loop constructed with goto are no more supported since Frama-C 23 (Vanadium)
because of unsoundness bugs to be fixed. A new engine is under construction but is not yet ready
(medium).

Dynamic allocation. All implemented memory models are able to deal with dynamic allocation, which
is actually used internally to manage the scope of local variables. However, ACSL clauses for
specifying allocation and deallocation are not implemented yet (medium).

Assigns. The WP strategy for proving assign clauses is a based on a sound but incomplete verification:
we check that side effects (writes and called assigns) are included in specified assigns, which is
a sufficient but not necessary condition. The known workaround is to specify larger assigns and
to add the missing equalities to contracts. Indeed, looking for an efficient and more permissive
strategy would be challenging (hard).

Froms. Proving ACSL assigns-from clauses is not implemented. It is as difficult as proving functional
assigns. Although, we have designed some heuristics to prove assigns-from clauses in simple cases
that could be implemented on a mid-term basis (medium).

Per-behavior assigns. Different assigns clause associated with distinct behaviors are difficult to take
into account without a deep refactoring of the WP rule of calls. We currently use a sound
upper-approximation of assigns for function calls that might make correct ACSL properties not
provable by lack of precision (medium).

Bytes, unions & casts. Memory models with non-typed access and bit- or byte-precision access would
be easy to implement, although terribly inefficient. We are currently working on a new memory
analysis that would provide a deep understanding of how to make different memory models soundly
working with each others on distinct memory regions. This would deserve a brand new research
plan, to be founded by collaborative projects (hard).

Floats. A new sound but incomplete model for floats is provided since Frama-C 21 (Scandium). Here, by
incomplete we means that it is generally difficult to prove arithmetic properties of float operations
by lack of good support from SMT solvers. Although, recent advances on our Colibri solver open
the road to a better support for float operations in a near future (medium/hard).

12

1.6. LIMITATIONS & ROADMAP

Function pointers. Limited support for function pointers is provided via an extension of ACSL, see
Section 2.4.4 for details. Currently, a function pointer must be provably equal to a finite set of
known functions. Although, this could be easily extended to support function contracts refinement
(medium).

13

2Using the WP Plug-in

The WP plug-in can be used from the Frama-C command line or within its graphical user interface. It is
a dynamically loaded plug-in, distributed with the kernel since the Carbon release of Frama-C.

This plug-in computes proof obligations of programs annotated with ACSL annotations by weakest
precondition calculus, using a parametrized memory model to represent pointers and heap values.
The proof obligations may then be discharged by external automated theorem provers such as Alt-
Ergo [CCK06], CVC4 [BCD+11] and Z3 [dMB08] or by interactive proof assistants like Coq [Coq10] and
more generally, any automated or interactive prover supported by Why3 [BFMP11].

14

2.1. SUPPORTED ANNOTATIONS

2.1 Supported annotations

The WP plug-in supports the following code annotations. We also indicate the number of verification
conditions that are generated in the default configuration:

– lemma: 1 VC
– axiom: no VC (admitted with no proof)
– ensures: 1 VC
– exits: 1 VC
– disjoint: 1 VC
– complete: 1 VC
– requires: 1 VC for each call
– terminates: 1 VC for each call, 1 VC for each loop without "loop variant"
– decreases: 1 VC for each recursive call
– assigns: 1 VC for each assigned lvalue
– admit: no VC (admitted with no proof)
– assert/check: 1 VC
– loop invariant: 2 VCs (established, preserved)
– loop variant (integer): 2 VCs (positive, decreasing)
– loop variant (general measure): 1 VC (the measure is assumed to be well-founded)
– loop assigns: 1 VC for each assigned lvalue within the loop

The statement contracts are not supported. The number of generated verification conditions can vary
depending on the selected options. See for example the options listed in 2.4.4.

In addition, the WP plug-in asks the Frama-C kernel to generate automatically some annotations
when they are missing:

– terminates
– exits
– assigns, for functions without body

In the default Frama-C configuration, terminates is true, exits is false. These proofs are generally
easily discharged, reason why we enable them by default. The assigns clauses for functions without
body are inferred from the prototype, this is a best effort generation, and it triggers a warning since
this is unsafe. One shall check the generated warnings. For more information about the specification
generation, please refer to the options -generated-spec-* of the kernel and to the Frama-C User
Manual [CCK+].

15

2.2. GRAPHICAL USER INTERFACE

2.2 Graphical User Interface

To use the WP plug-in with the GUI, you simply need to run the Frama-C graphical user interface. No
additional option is required, although you can preselect some of the WP options described in section 2.4:

$ frama-c-gui [options...] *.c

As we can see in figure 2.1, the memory model, the decision procedure, and some WP options
can be tuned from the WP side panel. Other options of the WP plug-in are still modifiable from the
Properties button in the main GUI toolbar.

To prove a property, just select it in the internal source view and choose WP from the contextual
menu. The Console window outputs some information about the computation. Figure 2.2 displays an
example of such a session.

If everything succeeds, a green bullet should appear on the left of the property. The computation
can also be run for a bundle of properties if the contextual menu is open from a function or behavior
selection.

The options from the WP side panel correspond to some options of the plug-in command-line. Please
refer to section 2.4 for more details. In the graphical user interface, there are also specific panels that
display more details related to the WP plug-in, that we shortly describe below.

Source Panel. On the center of the Frama-C window, the status of each code annotation is reported
in the left margin. The meaning of icons is the same for all plug-ins in Frama-C and more precisely
described in the general user’s manual of the platform. The status emitted by the WP plug-in are:

Icons for properties:
No proof attempted.
The property has not been validated.
The property is valid but has dependencies.
The property and all its dependencies are valid.

WP Goals Panel. This panel is dedicated to the WP plug-in. It shows the generated proof obligations
and their status for each prover. By clicking on a prover column, you can also submit a proof obligation
to a prover by hand. Right-click provides more options depending on the prover.

Interactive Proof Editor. From the Goals Panel view, you can double-click on a row and open the
interactive proof editor panel as described in section 2.3.

Properties Panel. This panel summarizes the consolidated status of properties, from various plug-ins.
This panel is not automatically refreshed. You should press the Refresh button to update it. This
panel is described in more details in the general Frama-C platform user’s manual.

16

2.2. GRAPHICAL USER INTERFACE

Figure 2.1: WP in the Frama-C GUI

Figure 2.2: WP run from the GUI

17

2.3. INTERACTIVE PROOF EDITOR

2.3 Interactive Proof Editor

This panel focus on one goal generated by WP, and allow the user to visualize the logical sequent to be
proved, and to interactively decompose a complex proof into smaller pieces by applying tactics.

Figure 2.3: Interactive Proof Editing

The general structure of the panel is illustrated figure 2.3. The central text area prints the logical
sequent to proved. In consists of a formula to Prove under the hypotheses listed in the Assume section.
Each hypothesis can consists of :

Type: formula expressing a typing constraint;
Init: formula characterizing global variable initialisation;
Have: formula from an assertion or an instruction in the code;
When: condition from a simplification performed by Qed;
If: structured hypothesis from a conditional statement;
Either: structured disjunction from a switch statement;
Stmt: labels and C-like instructions representing memory updates in executions.

2.3.1 Display Modes
There are several modes to display the current goal:

Autofocus: filter out clauses not mentioning focused terms (see below);
Full Context: disable autofocus mode — all clauses are visible;
Unmangled Memory: autofocus mode with low-level details of memory model;
Raw Obligation: no autofocus and low-level details of memory model.

18

2.3. INTERACTIVE PROOF EDITOR

Remark: the fold/unfold operations only affect the goal display. It does not transform the goal to be
proven.

The autofocus mode is based on a ring of focused terms. Clicking a term of a clause automatically
focus this term. Shift-clicking a term adds the term to the focus ring. When autofocus mode is active,
only the clauses that contains a focused term are displayed. Hidden clauses are mentioned by an ellipsis
[...].

Low-level details of the memory model are normally hidden, and represented by C-like instructions
such as:

Stmt { Label A: a.f[0] = y@Pre; }

This reads as follows: a program point is defined by the label A. At this point, the left-value a.f[0]
receives the value that variable y holds at label Pre. More generally, lv@L means the value of l-value
lv at label L:, and for more complex expression, « e »@L means the expression e evaluated at label
L. Redundant labels are removed when possible. This is a short-hand for ACSL notation \at(e,L) but
is generally more readable.

Sometimes, some memory operations can not be rendered as C instructions, typically after trans-
forming a goal so far. In such situations, the memory model encoding might appear with terms like
µ:Mint@L.

With memory model unmangled, the encoding in logic formulae is revealed and no label are displayed.

2.3.2 Tactics
The right panel display a palette of tactics to be applied on the current goal. Tooltips are provided to
help the user understanding how to configure and run tactics.

Only applicable tactics are displayed, with respect to current term or clause selected. Many tactics
can be configured by the user to tune their effect. Click on the tactic button to toggle its control panel.
Once a tactic is correctly configured, it can be applied by clicking its « Play » button.

2.3.3 Term Composer
Some tactic require one or several terms to be selected. In such case, the normal view display the selected
term. It can be edited by buttons in the view, like a RPN calculator. More buttons appear with respect
to already selected terms. Numerical constants can be composed, and combined with selected terms.

Typically, the composer displays a stack of values, like for instance:
A: 45
B: a[0]@Pre (int)

In such a case, the user can select the value 45 with the Select A button, or add the two numbers
with the Add A+B button.

Sometimes, like for the Instance tactic, a range of numerical values can be selected. In such a case,
when two numbers are selected, a special button Select A..B appears.

The list of all available composer buttons is displayed by the Help button.
A composer worth to be mentioned is Destruct, typically available on complex expressions. It

allows to decompose a value into its sub-components. For instance, destructuring the value B above will
reveal the address « a+0 »@Pre and memory µ:Mint@Pre.

2.3.4 Proof Script
The top toolbar upon the goal display show the current status of the goal and the number of pending
goals. The media buttons allow to navigate in the proof tree.

Next/Prev: navigate among the list of pending (non proved) sub-goals;
Forward: goes to the next pending sub-goal;
Backward: cancel the current tactic and prover results;
Clear: restart all the interactive proof from the initial goal.

19

2.3. INTERACTIVE PROOF EDITOR

A sketch of current proof is displayed on top of the goal ; each step is clickable to navigate into the
proof. Only the path leading to the current node is unfolded.

When all pending sub-goals have been proved, the initial goal is marked proved by Tactical in the
goal list panel. It is time to save the script. A button is also available to replay the saved script, if any.
Saving and replay are also accessible from the list of goals, in the popup menu of the Script prover
column.

2.3.5 Replaying Scripts
Editing scripts interactively allows the user to finish the proofs. Once proofs are saved, he must be able
to replay them from the command line. To ease the process, the following options are available to the
user:

-wp-session <dir> to setup a directory where scripts are saved in;
-wp-prover tip for incrementally building and updating the session scripts;
-wp-prover script for replaying saved scripts only, as they are;

The script prover only runs the proof scripts edited by the user from the TIP, including the scripts
being complete or known to being stuck at some sub-goal. The other proof obligations are transmitted
to other provers, if some are provided.

This mode is well suited for replaying a proof bench, by using a combination of provers such as
-wp-prover script,alt-ergo. Moreover, the script prover never modifies the proof session and
the proof scripts.

The tip prover is similar, except that it never runs sub-goals that are known to be stuck but
updates the proof scripts on success or when an automated proof fails. Using the tip prover is less
time consuming and eventually prepares new scripts for failed proofs to be edited later under the TIP.

Notice that, as soon as you have setup a wp-session directory, you benefit from cache facilities to
speedup your proofs. Consult Section 2.4.12 for details.

20

2.3. INTERACTIVE PROOF EDITOR

A typical proof session consists then in the following stages:
a. Collecting the automated proofs and preparing for the TIP.
frama-c [...] -wp-prover tip,alt-ergo

This runs all existing scripts (none at the very beginning) in success-mode only, and try Alt-Ergo on
the others. Failed proofs lead to new empty scripts created.

b. Running the TIP.
frama-c-gui [...] -wp-prover tip

This mode only runs existing scripts (typically prepared in the previous phase) in success-mode only,
which is quite fast. Finally, the GUI is opened and the user can enter the TIP and edit the proofs.

Most goals are reported not to be proved, because automated proof is deactivated since no other
prover than tip is specified. However, by filtering only those proof scripts that requires completion,
only the relevant goals appear. The user has to save its edited proof scripts to re-run them later.

Any number of phase a. and b. can be executed and interleaved. This incrementally builds the set
of proof scripts that are required to complement the automated proofs.

c. Consolidating the Bench.
frama-c [...] -wp-prover script,alt-ergo

This mode replays the automated proofs and the interactive ones, re-running Alt-Ergo on every WP
goals and every proof tactic sub-goals. The user scripts are never modified — this is a replay mode only.

2.3.6 Tracking Scripts
When working on large verification use-cases, it is common that some proof scripts become useless
because the associated proof obligation does not exist anymore.

WP can track the scripts that are used during verification. For this, one has to initialize a tracking
directory. This is done using the option -wp-prepare-scripts. This command creates a .marks
directory in the proof session scripts directory (that can be configured using -wp-session), if such a
directory already exists it is removed and created again.

Then, each time WP uses a proof script, it is marked as used in the .marks directory. In particular,
it is then possible to run WP several times to verify different parts of the code, yet marking the scripts
for all those different parts.

Once one is certain that the entire verification of the use case has been replayed for marking, the
option -wp-finalize-scripts can be used to remove all orphan scripts and the marking directory.
The option -wp-dry-finalize-scripts can be used to log the remove actions instead of actually
doing them.

2.3.7 Strategies (DEPRECATED)
S trategies described below are deprecated since Frama-C 27.0 (Cobalt). Please use “Proof Strategies”
instead (Section 2.5).

Strategies are heuristics that generate a prioritized bunch of tactics to be tried on the current goal.
Few built-in strategies are provided by the WP plug-in ; however, the user can extends the proof editor
with custom ones, as explained in section 2.3.11 below.

To run strategies, the interactive proof editor provide a single button Strategies in the tactic
panel. Configure the heuristics you want to include in your try, then click the button. The generated
with highest priority is immediately applied. The proof summary now display backtrack buttons
revealing proof nodes where alternative tactics are available. You can use those backtracking button to
cycle over the generated tactics.

Of course, strategies are meant to be used multiple times, in sequence. Recall that strategies apply
highest priority tactic first, on the current goal. When using strategies several times, you shall see
several backtracking buttons in your proof script. You backtrack from any point at any time.

21

2.3. INTERACTIVE PROOF EDITOR

You shall also alternate strategies and manually triggered tactics. Though, strategies are only used
to infer or suggest interesting tactics to the user. Once your are finished with your proved, only the
tactics are saved in the script, not the strategies used to find them. Hence, replaying a script generated
with strategies would not involve backtracking any more. The script will directly replay your chosen
alternatives.

It is also possible to call strategies from the command line, with option -wp-auto. The strategies
are tried up to some depth, and while a limited number of pending goals remains unproved by Qed or
the selected provers. More precisely:

-wp-auto s,... applies strategies s,... recursively to unproved goals.

-wp-auto-depth <n> limit recursive application of strategies to depth n (default is 5).

-wp-auto-width <n> limit application of strategies when there is less than n pending goals (default
is 10).

-wp-auto-backtrack <n> when the first tried strategies do not close a branch, allows for back-
tracking on n alternative strategies. Backtracking is performed on goals which are closed to the
root proof obligation, hence performing a kind of width-first search strategy, which tends to be
more efficient in practice. Backtracking is deactivated by default (n = 0) and only used when
-wp-auto is set.

The name of registered strategies is printed on console by using -wp-auto ’?’. Custom strategies
can be loaded by plug-ins, see below.

2.3.8 General Tactics
Absurd Contradict the Goal or an Hypothesis
The user can prove the goal by contradiction:

∆ |= G ▷ ∆,¬G |= false

Or the user can select a hypothesis H, and change the goal to ¬H:

∆, H |= G ▷ ∆ |= ¬H

Clear Remove Hypothesis
The user can select a hypothesis H, and remove it from the context:

∆, H |= G ▷ ∆ |= G

Choice Select a Goal Alternative
When the goal is a disjunction, the user select one alternative and discard the others:

∆ |= Γ, G ▷ ∆ |= G

Compound Decompose compound equalities
When the user select an equality between two records, it is decomposed field by field.

a = b ▷
∧

a.fi = b.fi

Contrapose Swap and Negate Hypothesis with Conclusion
The user select a hypothesis (typically, a negation) and swap it with the goal.

∆, H |= G ▷ ∆,¬G |= ¬H

22

2.3. INTERACTIVE PROOF EDITOR

Cut Use Intermediate Hypothesis The user introduce a new clause C with the composer to prove the
goal. There two variants of the tactic, made available by a menu in the tactic panel.

The Modus-Ponens variant where the clause C is used as an intermediate proof step:

∆ |= G ▷ ∆ |= C
∆, C |= G

And the Case Analysis variant where the clause C is used with a split:

∆ |= G ▷ ∆, C |= G
∆,¬C |= G

Definition Unfold predicate and logic function definition
The user simply select a term f(e1, . . . , en) or a predicate P (e1, . . . , en) which is replaced by its definition,
when available.

Filter Dependent Erasure of Hypotheses
The tactic is always applicable. It removes hypotheses from the goal on a variable used basis. When
variables are compounds (record and arrays) a finer heuristic is used to detect which parts of the variable
is relevant. A transitive closure of dependencies is also used. However, it is always possible that too
many hypotheses are removed.

The tactic also have a variant where only hypotheses not relevant to the goal are retained. This is
useful to find absurd hypotheses that are completely disjoint from the goal.

Instance Instantiate properties
The user selects a hypothesis with one or several ∀ quantifiers, or an ∃ quantified goal. Then, with
the composer, the use choose to instantiate one or several of the quantified parameters. In case of ∀
quantifier over integer, a range of values can be instantiated instead.

When instantiating hypothesis with an expression e:

∆, ∀x P (x) |= G ▷ ∆, P (e) |= G

When instantiating with a range of values n . . . m:

∆, ∀x P (x) |= G ▷ ∆, P (n) . . . P (m) |= G

When instantiating a goal with an expression e:

∆ |= ∃x G(x) ▷ ∆ |= G(e)

Intuition Decompose with Conjunctive/Disjunctive Normal Form
The user can select a hypothesis or a goal with nested conjunctions and disjunctions. The tactics then
computes the conjunctive or disjunctive normal form of the selection and split the goal accordingly.

Lemma Search & Instantiate Lemma
The user start by selecting a term in the goal. Then, the search button in the tactic panel will display a
list of lemma related to the term. Then, he can instantiate the parameters of the lemma, like with the
Instance tactic.

Rewrite Replace Terms
This tactic uses an equality in a hypothesis to replace each occurrence of term by another one. The
tactic exists with two variants: the left-variant which rewrites a into b from equality a = b, and the
right-variant which rewrites b into a from equality a = b. The original equality hypothesis is removed
from the goal.

∆, a = b |= G ▷ ∆[a← b] |= G[a← b]

23

2.3. INTERACTIVE PROOF EDITOR

Split Decompose Logical Connectives and Conditionals
This is the most versatile available tactic. It decompose merely any logical operator following the sequent
calculus rules. Typically:

∆, (H1 ∨H2) |= G ▷ ∆, H1 |= G
∆, H2 |= G

∆ |= (G1 ∧G2) ▷ ∆ |= G1
∆ |= G2

∆, H?P : Q |= G ▷ ∆, H, P |= G
∆,¬H, Q |= G

. . .

When the user selects a arbitrary boolean expression e, the tactic is similar to the Cut one:

∆ |= G ▷ ∆, e |= G
∆,¬e |= G

Finally, when the user select a arithmetic comparison over a and b, the tactics makes a split over
a = b, a < b and a > b:

∆ |= G ▷ ∆, a < b |= G
∆, a = b |= G
∆, a > b |= G

2.3.9 Integers & Bit-wised Tactics
BitRange Range of logical bitwise operators
This tactical applies the two following lemmas to the current goal. The first lemma is on logical-or, and
only applies to positive integers: ∧

i 0 ≤ xi < 2p

0 ≤ lor(x1, . . . , xn) ≤ 2p

The second lemma is on logical-and, and applies to at-least one positive integer:∨
i 0 ≤ xi ∧

∧
i xi ≤ 2p

0 ≤ land(x1, . . . , xn) ≤ 2p

The tactical rewrites range goals on logical and/or into the corresponding range over its parameters,
by finding a suitable 2p to apply the theorems. Such a strategy is not complete in general. Typically,
land(x, y) < 38 is true whenever both x and y are in range 0 . . . 31, but this is also true in other cases.

Bit-Test Range Tighten bounds with respect to bits
The bit_test(a,b) function is predefined in WP and is equivalent to the ACSL expression
(a & (1 << k)) != 0. The Qed engine has many simplification rules that applies to such pat-
terns.

The user selects an expression bit_test(n, k) with k a constant integer value greater or equal to 0
and lower than 128. The tactic uses this test to thighten the bounds of n.

∆ |= G ▷ ∆, T |= G
∆, F |= G

with
T ≡ bit_test(n, k) ∧ (0 ≤ n ⇒ 2k ≤ n)
F ≡ ¬bit_test(n, k) ∧ (0 ≤ n < 2k+1 ⇒ n < 2k)

24

2.3. INTERACTIVE PROOF EDITOR

Bitwise Decompose equalities over N -bits
The use selects an integer equality and a number of bits. Providing the two members of the equality are
in range 0..2N − 1, the equality is decomposed into N bit-tests equalities:

∆ |= G ▷ ∆ |= 0 ≤ a, b < 2N

σ(∆) |= σ(G)

where σ is the following subsitution:

σ ≡

[
a = b ←

∧
k∈0..N−1

bit_test(a, k) = bit_test(b, k)
]

Congruence Simplify Divisions and Products
This tactic rewrites integer comparisons involving products and divisions. The tactic applies one of the
following theorems to the current goal. In the following lemmas, k, k′, and n are integer constants, a and
b any integer terms. The notation k|n stands for k divides n. The lemmas are extended to non-strict
inequalities and non-positive constants in a natural way.

0 < k, a < n/k =⇒ k.a < n
k|n, a = n/k ⇐⇒ k.a = n
¬(k|n), k.a = n =⇒ false
0 < k, a < k.(b + 1) =⇒ a/k < b

0 < k, 0 < k′, k′.a < k.b =⇒ a/k < b/k′

n|k, n|k′, (k/n).a = (k′/n).b ⇐⇒ k.a = k′.b

Induction Start a proof by integer induction
The user select any integer expression e in the proof and a base value b (which defaults to 0). The tactic
generates a proof by induction on e, that is, the base case e = b and then the cases e < b and b < e.
Formally, the initial goal ∆0 |= G0 is first generalized into ∆, P (e) |= Q(e). The tactic then proceed by
(strong) induction over n for G(n) ≡ P (n) =⇒ Q(n):

∆ |= G(n) ▷ ∆, n = b |= G(n)
∆, ∀i, b ≤ i < n =⇒ G(i) |= G(n)
∆, ∀i, n < i ≤ b =⇒ G(i) |= G(n)

Mod-Mask Rewrite bitmask into/from modulo
This tactic is used to rewrite a bitmask into a modulo (or a modulo into a bitmask) when possible.
The user selects an expression e of the form b%m (resp. b&m - land b m) than can be rewritten into
b&(m + 1) (resp. b%(m− 1)), if 0 ≤ b and m is a positive power of 2 (resp. m + 1 is a positive power of
2). When selecting an expression x&y, both directions x%(y − 1) and y%(x− 1) can be considered.

Since establishing that m is a positive power of 2 can be hard, the tactic has several behaviors. If
Qed can prove immediately that an operand m (or m + 1 for bitmaks) is a positive power of 2, the tactic
only generates the guard 0 ≤ b and the rewritten goal. If it is not the case, the tactic appears with the
name “Mod-Mask (hard)” in the GUI. In this situation, the guard consists of two conditions: 0 ≤ b and
m (or m + 1) is a positive power of 2. This guard involves an existential quantification, so it can be
hard to prove. When the selected term is a bitmask, the tactic cannot decide itself the direction of the
modulo, thus a checkbox is added in the configuration of the tactic to select the direction of rewriting.

Overflow Integer Conversions
This tactic split machine integer conversions into three cases: value in integer range, lower than range
and upper than range. The tactic applies on expression with pattern to_iota(e) where iota is a
machine-integer type name, eg. to_uint32.

25

2.3. INTERACTIVE PROOF EDITOR

∆ |= G ▷ σid(∆) |= low ≤ e ≤ up⇒ σid(G)
σ+(∆) |= low < e⇒ σ+(G)
σ−(∆) |= e < up⇒ σ−(G)

where
– [low..up] is the range of the iota integer domain,
– σid = [to_iota(e) 7→ e],
– σ+ = [to_iota(e) 7→ overflow(e)],
– σ− = [to_iota(e) 7→ overflow(e)].

Range Enumerate a range of values for an integer term
The user select any integer expression e in the proof, and a range of numerical values a . . . b. The proof
goes by case for each e = a . . . e = b, plus the side cases e < a and e > b:

∆ |= G ▷ ∆, e < a |= G
∆, e = a |= G

...
∆, e = b |= G
∆, e > b |= G

Shift Transform logical shifts into arithmetics
For positive integers, logical shifts such as a << k and a >> k where k is a constant can be interpreted
into a multiplication or a division by 2k.

When selecting a logical-shift, the tactic performs:

∆ |= G ▷ ∆ |= 0 ≤ a
σ(∆) |= σ(G)

where: σ = [lsl(a, k)← a ∗ 2k] for left-shift,
σ = [lsr(a, k)← a/2k] for right-shifts.

2.3.10 Domain Specific Tactics
Array Decompose array access-update patterns
The use select an expression e ≡ a[k1 7→ v][k2]. Then:

∆ |= G ▷ ∆, k1 = k2, e = v |= G
∆, k1 ̸= k2, e = a[k2] |= G

Havoc Go Through Assigns
This is a variant of the Lemma tactic dedicated to Havoc predicate generate by complex assigns clause.
The user select an address, and if the address is not assigned by the Havoc clause, the memory at this
address is unchanged.

Separated Expand Separation Cases
This tactic decompose a separated(a, n, b, m) predicate into its four base cases: a and b have different
bases, a + n ≤ b, b + m ≤ a, and a[0..n− 1] and b[0..m− 1] overlaps. The regions are separated in the
first three cases, and not separated in the overlapping case. This is kind of normal disjunctive form of
the separation clause.

26

2.3. INTERACTIVE PROOF EDITOR

Sequence Unroll repeat-sequence operator
In this section, let us use An for the ACSL notation A *^ n, the repeat list operation, and A⊕ l for
the list concatenation.

This tactics is used to transform An sequences. Threes behaviors can be selected: unroll left that
rewrites the list An into A⊕An−1, unroll right that rewrites the list An into An−1 ⊕A and unroll sum
that rewrites the list An1+...+nk into An1 ⊕ ...⊕Ank . For unroll left and right, a negative value leads to
an empty list. For unroll sum, one must prove that all nI are positive.

Rule for unroll left:

∆ |= G ▷ ∆[An ← A⊕An−1], n > 0 |= G[An ← A⊕An−1]
∆[An ← []], n ≤ 0 |= G[An ← []]

Rule for unroll right:

∆ |= G ▷ ∆[An ← An−1 ⊕A], n > 0 |= G[An ← An−1 ⊕A]
∆[An ← []], n ≤ 0 |= G[An ← []]

Rule for unroll sum:

∆ |= G ▷ ∆ |=
∧k

i=1 0 ≤ ni

∆[A
∑k

i=1
ni ←

⊕k
i=1 Ani] |= G[A

∑k

i=1
ni ←

⊕k
i=1 Ani]

Validity Unfold validity and range definitions
The user selects a validity expression (valid_rd, valid_rw, invalid or included). The expression
is unfolded to a Qed term.

2.3.11 Custom Tactics and Strategies
The proof editor and script runner can be extended by loading additional plug-ins. These plug-ins are
regular OCaml files to be loaded with the kernel -load-module option. They will be compiled by
Frama-C against its API. The WP plug-in exports a rich API to extend the proof editor with new tactics,
strategies, and even term-composer tools.

It is not possible to reproduce here the complete API ; it is better to use the automatically generated
HTML documentation from WP’s sources. We only provide here a quick tour of this API, as a tutorial
on how to implement a basic custom strategy.

The main extension points of the WP plug-in’s API are the following ones:

Wp.Tactical.tactical Base-class definition of custom Tactic.
Wp.Strategy.heuristic Base-class definition of custom Strategy.
Wp.Auto.⋆ Pre-defined tactics and strategies.
Wp.Tactical.register Registration point for custom Tactics.
Wp.Strategy.register Registration point for custom Strategies.
Wp.Tactical.add_composer Registration point for custom term composer.

Warning: It is technically possible to break the logical soundness of WP when using custom tactics
crafted by hand. Fortunately, using only pre-defined tactics in custom strategies will be always safe,
even if your heuristic generates crazily stupid alternatives to solve a goal. The point with custom tactics
is that you might transform a sequent without preserving the equivalence with the original goal if you
make some mistakes into your custom code. This is the same problem as using ACSL axioms instead of
lemmas. So, use custom tactics carefully, and prefer custom strategies when possible.

To build a custom strategy, the typical boilerplate code is as follows:

27

2.3. INTERACTIVE PROOF EDITOR

(* file: dummy.ml *)
open Wp

class dummy : Strategy.heuristic =
object

method id = "MyStrategy.dummy" (* required, must be unique *)
method title = "Split Goal" (* visible in Strategy panel *)
method descr = "Simply split conjunctions in goal" (* idem *)
method search push sequent = (* heuristic code *)
let goal = snd sequent in
match Repr.pred goal with
| And _ →

let selection = Tactical.(Clause(Goal goal)) in
push (Auto.split ∼priority:2.0 selection)

| _ → ()
end

(* Register the strategy *)
let () = Strategy.register (new dummy)

Then, simply extend your command line with the following options to make your strategy available
from the interactive proof editor:

> frama-c-gui -load-module dummy.ml [...]

Note: Loading custom strategies is only required when running the graphical user interface
(frama-c-gui). When replaying scripts from the command line (frama-c), only custom tactics
and custom composers actually involved in proofs are required to be loaded.

The example custom strategy above is structured as follows. First we open the module Wp to simplify
access to the API. A custom strategy must be an instance of class-type Strategy.heuristic, and
we use a coercion here to explicit types. Methods #id, #title and #descr are required and describes
the strategy, making it available from the tactic panel in the graphical user interface.

The actual heuristic code takes place in method #search which has the following type (consult the
html API for details):

method search :
(Strategy.strategy → unit) → Conditions.sequent → unit

This method takes two parameters: a strategy registration callback and the sequent to prove. Each
heuristic is supposed to register any number of strategies to be tried on the provided sequent. In
turn, each strategy is a record consisting of a priority, a tactic, a target selection for the tactic and its
arguments. It is possible to build such a record by hand, using custom or predefined tactics. However, it
is much more convenient to use the helper functions from module Auto that directly build strategies.

In the example above, we inspect the structure of the goal, and when a conjunction is detected
(And _), we decide to register a split tactic, thanks to the helper function Auto.split. Default
priority is 1.0 by convention. Pre-installed strategies would only use range [0.5 . . . 2.0] of priorities. You
can use any value you want inside or outside this range. In the example below, we assign a high priority
to the split of goal conjunctions, meaning that such a split should be tried first.

Using Selections. Tactics always need a selection target. Moreover, some tactics require additional
parameters, also to be provided as selection values. Typically, consider the Auto.range tactic:

val Auto.range :
?priority:float → selection → vmin:int → vmax:int → strategy

28

2.3. INTERACTIVE PROOF EDITOR

Here the selection argument shall targets the expression to be enumerated in range vmin..vmax.
Selections must refer to a term that pre-exists in the sequent. You must indicate to the WP proof engine
how to rebuild this term from the sequent. Hence, if the C-code or the ACSL specification change, WP
still has a chance to rebuild the same selection from the updated sequent.

Selections are easy to build. There are five basic forms, as described below:

type Tactical.selection =
| Empty
(** no selection *)

| Clause of clause
(** selects a full hypothesis or the full goal *)

| Inside of clause * Lang.F.term
(** selects a sub-term of a hypothesis or goal *)

| Compose of compose
(** a calculus from several sub-selections *)

and Tactical.clause =
| Goal of Lang.F.pred
| Step of Conditions.step

It is also possible to build selections from sequent by explicit lookup:

val Strategy.select_e :
Conditions.sequent → Lang.F.term → Tactical.selection

val Strategy.select_p :
Conditions.sequent → Lang.F.pred → Tactical.selection

Composition allows you to build new terms from existing ones, like when using the term composer
from the graphical user interface. You access composers by their name, like in the term composer. The
API for building new terms is as follows:

val Tactical.int :
int → Tactical.selection

val Tactical.cint :
Integer.t → Tactical.selection

val Tactical.range :
int → int → Tactical.selection

val Tactical.compose :
string → Tactical.selection list → Tactical.selection

For instance, provided you have two selected terms a and b, you can build their sum using
compose "wp:add" [a;b]. The name of composers can be obtained from the graphical user interface.

Exploring Sequents. The clauses refer to parts of the provided sequent. Typically, a sequent consists
of a sequence of hypothesis, and a goal to prove. Each hypothesis is represented by a step, consisting
either of single hypothesis or a more structured condition (branch, cases, etc.):

type Conditions.sequent = sequence * Lang.F.pred
and sequence = step list ... (* private type *)
and step = { condition : condition ; ... }
and condition =
| Have of Lang.F.pred (** Hypothesis *)
| Init of Lang.F.pred (** C-initializer initialization clause *)
| Type of Lang.F.pred (** C/ACSL type constraints *)
| Core of Lang.F.pred (** Common hypothesis factorization from WP *)
| When of Lang.F.pred (** Hypothesis (tactical or simplification) *)
| Branch of Lang.F.pred * sequence * sequence (** If-Then-Else *)

29

2.3. INTERACTIVE PROOF EDITOR

| Either of sequence list (** Disjunction of Cases *)
val iter : (step → unit) → sequence → unit

When you walk through a sequence of hypothesis, you shall reuse the provided steps to build clauses
and selections.

Exploring Formulae . The constituent of hypothesis and goals are logical terms and predicates. You
shall use module Repr.term and Repr.pred to access the internal representation of formulae. There
are many constructors for terms and predicates, simply browse the html documentation to have an
overview. Many properties about terms and predicates are directly obtained from the Lang.F module.
The API is quite rich, so use the html documentation to get details.

30

2.4. COMMAND LINE OPTIONS

2.4 Command Line Options

The best way to know which options are available is to use:
frama-c -wp-help

The WP plug-in generally operates in three steps:
1. Annotations are selected to produce a control-flow graph of elementary statements annotated with

hypotheses and goals.
2. Weakest preconditions are computed for all selected goals in the control-flow graph. Proof

obligations are emitted and saved on disk.
3. Decision procedures (provers) are run to discharge proof obligations.
The WP options allow to refine each step of this process. It is very convenient to use them together

with the standard -then option of Frama-C, in order to operate successive passes on the project. See
section 2.4.14 for details.

2.4.1 Goal Selection
This group of options refines the selection of annotations for which proof obligations are generated. By
default, all annotations are selected. A property which is already proved – by WP or by any other
plug-in – does not lead to any proof-obligation generation, unless the property is individually selected
from the graphical user interface of the programmatic API.

-wp generates proof obligations for all (selected) properties.

-wp-fct <f1,...,fn> selects annotations of functions f1,...,fn (defaults to all functions).

-wp-skip-fct <f1,...,fn> ignores functions f1,...,fn (defaults to none).

-wp-bhv <b1,...,bn> selects annotations for behaviors b1,...bn (defaults to all behaviors) of the
selected functions (the name default! can be used to select the default anonymous behavior).

-wp-prop <p1,...,pn> selects properties having p1 or ...pn as tagname (defaults to all properties).
You may also replace a tagname by a @<category> of properties.
Recognized categories are: @lemma, @requires, @assigns, @ensures, @exits, @assert,
@check, @invariant, @variant, @breaks, @continues, @returns, @terminates,
@decreases, @complete_behaviors, @disjoint_behaviors.
Tags and categories can be prefixed with a minus sign to skip the associated annotations. For
example -wp-prop="-@assigns" removes all assigns and loop assigns properties from
the selection.
Tag names also include the name of the function or lemma associated with the property.
Remark: properties with tag name no_wp: are always and automatically filtered out and never
proved by WP.

-wp-(no)-status-all includes in the goal selection all properties regardless of their current status
(default is: no).

-wp-(no)-status-valid includes in the goal selection those properties for which the current status
is already ’valid’ (default is: no).

-wp-(no)-status-invalid includes in the goal selection those properties for which the current
status is already ’invalid’ (default is: no).

-wp-(no)-status-maybe includes in the goal selection those properties with an undetermined status
(default is: yes).

31

2.4. COMMAND LINE OPTIONS

-wp-(no)-legacy use the legacy WP generator, if set to no, WP uses a recently developed generator
(default is: no).

-wp-dump does not prove selected properties, but dumps the control flow graph computed by WP,
including code annotations, both DOT files and PDF files into the directory specified by -wp-out.

Remark: options -wp-status-xxx are not taken into account when selecting a property by its
name or from the GUI.

2.4.2 Program Entry Point
The generic Frama-C options dealing with program entry point are taken into account by WP plug-in as
follows:

-main <f> designates f to be the main entry point (defaults to main).

-lib-entry the main entry point (as defined by option -main) is analyzed regardless of its initial
context (default is no).

These options impact the generation of proof-obligations for the “requires” contract of the main
entry point. More precisely, if there is a main entry point, and -lib-entry is not set:

– the global variables are set to their initial values at the beginning of the main entry point for all
its properties to be established;

– special proof obligations are generated for the preconditions of the main entry point, hence to be
proved with globals properly initialized.

Otherwise, initial values for globals are not taken into account and no proof obligation is generated
for preconditions of the main entry point.

2.4.3 Model Selection
These options modify the underlying memory model that is used for computing weakest preconditions.
See chapter 3 for details. Models are identified by a combination of selectors which are defined below:

Selector Description
Hoare Select Hoare memory model.
Typed Select Typed memory model with limited casts.
cast Select Typed memory model with unlimited casts (unsound).
nocast Select Typed memory model with no casts.
raw Disable the combination of memory models.
var Combination of memory models based on variable analysis.
ref Activate the detection of pointer variables used for reference passing style.

caveat Caveat memory model (see 3.8).
int Use machine integers when overflows and downcasts might occurs.
nat Integer model without bounds (no overflow assumed).
float Use floating-point operations.
real Use mathematical reals instead of floating point.

Refer to Section 1.5 for details on arithmetic models and Chapter 3 for a description of memory
models.

The available WP command-line options related to model selection are:

-wp-model <spec...> specifies the models to use. The specification is a list of selectors. Selectors
are usually separated by ‘,’ although other separators are accepted as well: ‘+’, ‘_’, spaces,
newlines, tabs and parentheses ‘(’, ‘)’.

32

2.4. COMMAND LINE OPTIONS

Selectors are case insensitive. The option -wp-model can be used several times. All provided
selectors are processed from left to right, possibly canceling previous ones.
Default setting corresponds to -wp-model "Typed+var+int+float".

-warn-(un)signed-(overflow|downcast) those kernel options are used by the (default) arith-
metic model -wp-model +int to interpret integer arithmetic. See section 1.5 for details.

-wp-literals exports the contents of string literals to provers (default: no).

-wp-extern-arrays gives an arbitrary large size to arrays with no dimensions. This is a model of
infinite size arrays (default is: no).

-wp-(alias|unalias|ref|context)-vars <var,...> these options can be used to finely
tweak the memory model inferred by WP. Each variable with a given name can be forced to be
modeled as follows:

alias: the variable is known to have aliases and modeled by Typed.
noalias: the variable is known to have no alias and modeled with Hoare.

ref: the variable is a constant pointer and is modeled by the Ref.
context: the variable is initially non-aliased and uses a fresh global in Typed.

-wp-(no)-alias-init Use initializers for aliasing propagation (default is: yes).

-wp-(no)-volatile this option (de)activate the correct handling of volatile access. By default,
accessing a volatile l-value returns an undefined value, and writing to a volatile l-value is modeled
like an ACSL assigns clause. Hence, only the accessed values are ignored.
Setting -wp-no-volatile turns this behavior off: it is potentially unsound and makes the WP
emitting a warning on each volatile access.

-wp-(no)-warn-memory-model this option (de)activate the warnings about memory model hypothe-
ses for the generated proof obligations, as described in Section 3.6. For each model supporting this
feature, and each concerned function, an ACSL specification is printed on output. Currently, only
the Caveat, Typed and Ref memory models support this feature. See also experimental option
below.

-wp-(no)-check-memory-model this experimental option generates ACSL contracts for the
selected memory model hypotheses, as described in Section 3.6 and listed by option
-wp-warn-memory-model. Hence, the memory model hypothes are exposed to WP and other
plugins. Disabled by default.

2.4.4 Computation Strategy
These options modify the way proof obligations are generated during weakest precondition calculus.

-wp-(no)-rte generates RTE guards before computing weakest preconditions. This option calls the
rte generation plug-in before generating proof obligations. The generated guards, when proved1,
fulfill the requirements for using the WP plug-in with the default machine-integer domain (default
is: no). Using this option with -wp-model nat is tricky, because rte uses the kernel options to
generate guards, and they might be not strong enough to meet the natural model requirements. In
this case, a warning is emitted for potential runtime errors. Refer to Section 1.5 for details.

-wp-(no)-init-const use initializers for global const variables (defaut is: yes).

-wp-(no)-split Splits conditional statements into separated goals (default is: no).

-wp-(no)-split-switch Splits switch statements into sepeared goals (default is: yes).

1 It is still correct to prove these RTE annotations with the WP plug-in.

33

2.4. COMMAND LINE OPTIONS

-wp-split-max <n> limits the number of sub-goals generated by -wp-split and
-wp-split-switch (defaults to 1000).

-wp-(no)-split-conj conjunctions in generated proof obligations are recursively split into sub-goals.
The generated goal names are suffixed by “part<n>” (defaults to no).

-wp-split-cnf <d> transforms all goals with in conjunctive normal form (CNF) at depth d. Value
-1 stands for unlimited depth. Default is 0, which means no CNF transformation.

-wp-(no)-callee-precond includes preconditions of the callee after2 a call (default is: yes).

-wp-(no)-precond-weakening discard pre-conditions of side behaviours (sound but incomplete
optimisation, default is: no).

-wp-unfold-assigns <n> when proving assigns, unfold up to n levels of struct compounds types
or access via ranges. struct are unfolded field by field, ranges are unfolded cell by cell (via
a universal quantification over the index of the cell). This allows for proving that assigning a
complete structure is still included into an assignment field by field, or that assigning a range is
still included in a union of subranges. This option is set to 0 by default, because it is generally not
necessary and it can generates a large number of verifications for structures with many (nested)
fields. -1 enables full unfolding.

-wp-(no)-variant-with-terminates prove loop variant under the termination hypothesis
(thus, under a terminates \false, any loop variant proof is trivial) (default is: no).

ACSL extension @calls

Frama-C provides an ACSL extension @calls that can be written before an indirect call to indicate
which functions can be the target of the pointer (see [CCK+] for more information). Upon encountering
such annotation, WP will perform a case analysis with the contract of each provided function.

For example:
/*@ ensures \result == x ; */
int f1(int x);
/*@ ensures \result == x+1 ; */
int f2(int x);

/*@ requires fp == &f1 || fp == &f2 ;
ensures POST: \result == 4 || \result == 5; */

int caller(int (*fp)(int)){
//@ calls f1, f2 ;
return (*fp)(4);

}

These annotations split post-conditions to the dynamic call into two sub-goals: one for call to f1
and a second for the call to f2. A last goal is generated at the call site: one must prove that fp is either
f1 or f2.

Proof of @terminates

In ACSL, a function can be specified to terminate when some condition P holds in pre-condition.
/*@ terminates P ; */
void function(void){

...
}

2 Proof obligations are always generated to check preconditions.

34

2.4. COMMAND LINE OPTIONS

If terminates verification is active (depending on -wp options) WP collects all function calls and
loops and generate verification conditions (VCs) to prove them, as detailed below.

Loop variants. When a loop has a variant, no particular verification is generated for termination.
However, if -wp-variant-with-terminates is active, the variant is verified only when P holds in
pre-condition. Intuitively, this option means that variant has to decrease only if the function has to
terminate. For example:

//@ terminates i >= 0 ;
void positive(int i){

/*@ loop invariant \at(i, Pre) >= 0 ==> 0 <= i <= \at(i, Pre) ;
loop assigns i ;
loop variant i ; // verified when i >= 0 at pre

*/
while(i) --i;

}

Note that when terminates \false is specified, any loop variant would trivially holds.
When a loop does not have a variant, WP checks that the loop is unreachable when P holds in

precondition, which means that a loop is allowed to not terminate when the function does not have to
terminate. For example:

//@ terminates i >= 0 ;
void function(int i){

if(i < 0){
// note i >= 0 && i < 0 ==> \false
while(1);

}
}

Function call. When a function f is required to terminate on P, and calling function g only terminates
when Q, WP tries to prove that P@pre ==> Q@call-point. Indeed, for f to terminates while calling
g, then g shall terminate. Note that it means that if the function under verification shall terminate, any
call to a non-terminating function shall be unreachable. For example:

//@ terminates i <= 0 ;
void f(int i) ;

//@ terminates i > 0 ;
void g(int i) ;

/*@ requires i <= 0 ;
terminates \true ; */

void caller(int i){
f(i); // succeeds
g(i); // fails, thus global termination is not proved

}

When a called function does not have a terminates specification, WP assumes that it does not
terminate.

(Mutually) recursive function. When a function is involved in a recursive cluster (as defined in the
ACSL manual) and shall terminate, WP checks that a decreases clause is available for the function.
Proving that existing recursive calls might be unreachable is delegated to the proof of the decreases
clause.

35

2.4. COMMAND LINE OPTIONS

Function pointers. On a call via a function pointer, WP checks that a @calls is specified for this
function pointer. If so, WP just behaves as explained before for function calls. If such a specification is
not available, WP considers that the pointed function might call the function under verification and
thus that it is part of a recursive cluster and shall provide a decreases clause.

2.4.5 Smoke Tests
During modular deductive verification, inconsistencies in function requirements can be difficult to detect
until you actually call it. Although, such inconsistencies make its post-conditions provable, while its
pre-conditions would never be provable.

The WP plug-in can generate smoke-tests to detect such inconsistencies. Basically, it consists in
checking if \false is provable under the requirements or assumptions of a behaviour, or under the
invariants of a loop. Also, a simple reachability analysis is performed to track dead-code statements and
calls that neither terminates nor exits.

This is best-effort verification : if at least one prover succeed in proving \false, an inconsistency is
detected. Otherwise, the test is not conclusive, and you can never be sure that the ACSL annotations
are free of inconsistencies.

In case any smoke-test fails, a “False if reachable” status is put on the inconsistent requirements, or
on the loop with inconsistent invariants, and WP generates a user warning.

-wp-(no)-smoke-tests generates checks to detect inconsistencies (default is: no).

-wp-smoke-timeout timeout to be used for trying to prove \false on smoke-tests (default is 2
seconds).

-wp-(no)-smoke-dead-assumes includes smoke tests for dead assumes (default is: yes).

-wp-(no)-smoke-dead-call includes smoke tests for non-terminating calls (default is: yes).

-wp-(no)-smoke-dead-code includes smoke tests for dead code (default is: yes).

-wp-(no)-smoke-dead-local-init includes smoke tests for dead local variables initialization
(default is: no).

-wp-(no)-smoke-dead-loop includes smoke tests for inconsistent loop invariants (default is: yes).

When reporting prover results for smoke-tests, the WP displays “Failed” when some prover succeeds
in discharging the \false proof-obligation and “Passed” when all the provers result are unknown or
interrupted. In the final prover statistics, the interrupted smoke tests are not reported, since they are
considered valid tests.

2.4.6 Trigger Generation
The ACSL language does not provide the user with a syntax for declaring triggers associated to lemmas
and axioms. However, triggers are generally necessary for SMT solvers to discharge efficiently the
generated proof obligations.

There is a limited support for triggers in WP. The sub-terms and sub-predicates marked with label
"TRIGGER" in an axiom or lemma are collected to generate a multi-trigger for their associated free
variables.

2.4.7 Qed Simplifier Engine
These options control the simplifications performed by the WP plug-in before sending proof obligations
to external provers. The default simplifiers can be controlled by the following options:

-wp-(no)-simpl simplifies constant expressions and tautologies (default is: yes).

36

2.4. COMMAND LINE OPTIONS

-wp-(no)-let propagates equalities by substitutions and let-bindings (default is: yes).

-wp-(no)-filter filter non used variables and related hypotheses (default is: yes).

-wp-(no)-core factorize common properties between branches (default is: yes).

-wp-(no)-pruning eliminates trivial branches of conditionals (default is: yes).

-wp-(no)-clean removes unused terms and variables from proof obligations (default is: yes).

-wp-(no)-ground replace ground values in equalities (default is: yes).

-wp-(no)-extensional use extensional equality on compounds (default is: yes).

-wp-(no)-reduce replace functions with precedence to constructors and operators (default is: yes).

-wp-(no)-parasite eliminate parasite variables (default is: yes).

-wp-(no)-bits simplifies bitwise operations (default is: yes).

-wp-(no)-init-summarize-array summarize contiguous initializers with quantified formulae (de-
fault: yes).

-wp-(no)-simplify-is-cint eliminates redundant constraints on integers (default: yes).

-wp-(no)-simplify-land-mask tight constants in logical-and with unsigned integers (default:
yes).

-wp-(no)-prenex normalize nested quantifiers into prenex-form (default: no).

-wp-(no)-simplify-forall eliminates integer ranges in quantifiers (unsound, to be used with
caution, default is: no).

-wp-(no)-simplify-type remove type constraints from proof obligation (incomplete, default is:
no).

-wp-bound-forall-unfolding <n> instantiates statically n instances of k for hypothesis ∀k ∈
[n1..n2], a = b (default is: 1000).

2.4.8 Prover Selection
The generated proof obligations are submitted to external decision procedures run through the Why-3
platform. If proof obligations have just been generated, by using -wp, -wp-fct, -wp-bhv or -wp-prop,
then only the new proof obligations are sent. Otherwise, all unproved proof obligations are sent to
external decision procedures.

Support for Why-3 IDE is no longer provided.
Since Frama-C 22.0 (Titanium) support for Coq interactive prover has been added and might also

work with other interactive provers. See -wp-interactive <mode> option for details.

-wp-prover <dp,...> selects the decision procedures used to discharge proof obligations. See below
for supported provers. By default, alt-ergo is selected, but you may specify another decision
procedure or a list of to try with. Finally, you should supply none for this option to skip the
proof step.
It is possible to ask for several decision procedures to be tried. For each goal, the first decision
procedure that succeeds cancels the other attempts.
You may also select provers "tip" to use proof strategies and "script" to use proof scripts
(without applying new proof strategies), see option "-wp-script" below for more details.

37

2.4. COMMAND LINE OPTIONS

-wp-script <mode> selects how to manage proof strategies and proof scripts session. Several modes
are available:

– "batch" use existing scripts, but do not store new scripts. This is the default mode for
prover "script".

– "update" use existing scripts and store new or updated scripts in proof session. This is the
default mode for prover tip.

– "init" don’t use existing scripts and store the newly generated scripts in proof session.
– "dry" don’t use existing script and don’t store any new scripts in proof session.

-wp-interactive <mode> selects the interaction mode with interactive provers such as Coq (while
it could work for other interactive provers, it has not been tested so far). Five modes are available:

– "batch" mode only check existing scripts (the default);
– "update" mode update the script and then checks it;
– "edit" mode opens the default prover editor on each generated goal;
– "fix" mode only opens editor for non-proved goals;
– "fixup" combines "update" and "fix" (if necessary).

New scripts are created in the interactive directory of WP session (see option -wp-session
<dir>). In case option -wp-cache-env is set, the script mode is taken from environment
variable FRAMAC_WP_SCRIPT instead.

-wp-detect lists the provers available for Why-3. This command can only work if why3 API was
installed before building and installing Frama-C. The option reads your Why-3 configuration and
prints the available provers with their -wp-prover <p> code names.

-wp-(no)-run-all-provers Run all specified provers on each goal not proved by Qed. When a
prover succeeds in proving the goal, the others are not stopped. (default is: no).

-wp-strategy s,... specifies the default ones to be used, see Section 2.5 for details.

-wp-gen only generates proof obligations, does not run provers. See option -wp-out to obtain the
generated proof obligations.

-wp-par <n> limits the number of parallel process runs for decision procedures. Default is 4 processes.
With -wp-par 1, the order of logged results is fixed. With more processes, the order is runtime
dependent.

-wp-filename-truncation <n> truncates the basename of proof obligation files to the first n
characters. Since numbers can be added as suffixes to ensure unique filenames, their length can be
longer than n. No truncation is performed when the value equals zero. (default is: 60)

-wp-(no)-proof-trace asks for provers to output extra information on proved goals when available
(default is: no).

-wp-timeout <t> sets the timeout (in seconds) for the calls to the decision prover (defaults to 2
seconds).

-wp-memlimit <m> sets the memory-limit (in Mb) for the calls to the decision prover (defaults to
1000 Mb).

-wp-fct-timeout <f1:t1,f2:t2,...> customize the timeout for each specified function (t1 for
f1, t2 for f2, etc).

-wp-interactive-timeout <n> sets the timeout (in seconds) for checking edited scripts with
interactive provers (defaults to 30 seconds).

38

2.4. COMMAND LINE OPTIONS

-wp-(no)-script-on-stdout displays generated proof scripts on stdout instead of saving them on
disk (default is: no).

-wp-time-extra <n> additional time allocated to provers when replaying a script. This is used to
cope with variable machine load. Default is 5s.

-wp-time-margin <n> margin time for considering a proof to be replayable without a script. When
a proof succeed within timeout-margin seconds, it is considered fully automatic. Otherwise, a
script is created by prover tip to register the proof time. This is used to decrease the impact of
machine load when proof time is closed to the timeout. Default is 5s.

-wp-steps <n> sets the maximal number of prover steps. This can be used as a machine-independent
alternative to timeout.

-wp-why3-opt=’options,...’ provides additional options to the why3 command.

-wp-why3-extra-config=’files,...’ provides additional configuration files for why3.

-wp-prepare-scripts initialize a script tracking directory in the session directory.

-wp-finalize-scripts remove untracked scripts according to the tracking directory if it does exist
(does not remove anything otherwise).

-wp-dry-finalize-scripts scripts that might be removed by -wp-finalize-scripts are kept,
a message is printed instead for each file. The marks directory is kept.

Example of using provers. Suppose you have the following configuration:
./bin/frama-c -wp-detect
[wp] Prover Alt-Ergo 2.0.0 [alt-ergo|altergo|Alt-Ergo:2.0.0]
[wp] Prover CVC4 1.6 [cvc4|CVC4:1.6]
[wp] Prover CVC4 1.6 [cvc4-ce|CVC4:1.6,counterexamples]
[wp] Prover Eprover 2.4 [eprover|Eprover:2.4]
[wp] Prover Z3 4.8.7 [z3-ce|Z3:4.8.7:counterexamples]

Then, to use (for instance) CVC4 1.6, you can use -wp-prover cvc4 or -wp-prover CVC4:1.6.
Similarly, if you want to use Z3 4.6.0 without bitvectors, you can use -wp-prover z3-nobv. Finally,
since Why-3 also provides the alias altergo for this prover, -wp-prover altergo will also run it
via Why-3.

If you require a specific version of a prover which is not installed, WP will fallback to the default
version available to Why-3 for this prover, if any.

Notice that Why-3 provers benefit from a cache management when used in combination with a
WP-session, see Section 2.4.12 for more details.

2.4.9 Generated Proof Obligations
Your proof obligations are generated and saved to several text files. With the -wp-out option, you can
specify a directory of your own where all these files are generated. By default, this output directory
is determined as follows: in the GUI, it is <home>/.frama-c-wp where <home> is the user’s home
directory returned by the HOME environment variable. In command-line, a temporary directory is
automatically created and removed when Frama-C exits.

Other options controlling the output of generated proof obligations are:

-wp-print pretty-prints the generated proof obligations on the standard output. Results obtained by
provers are reported as well.

-wp-status pretty-prints only proof obligations that are not (yet) proved on the standard output. In
case of script, prints all the non-proved sub-goals of the script.

39

2.4. COMMAND LINE OPTIONS

-wp-out <dir> sets the user directory where proof obligations are saved. The directory is created if
it does not exist yet. Its content is not cleaned up automatically.

2.4.10 Additional Proof Libraries
It is possible to add additional bases of knowledge to decision procedures thanks to the following option:

-wp-share <dir> modifies the default directory where resources are found. This option can be useful
for running a modified or patched distribution of WP.

2.4.11 Linking ACSL Symbols to External Libraries
Besides additional proof libraries, it is also possible to link declared ACSL symbols to external or
predefined symbols. In such case, the corresponding ACSL definitions, if any, are not exported by WPs.

External linkage is specified in driver files. It is possible to load one or several drivers with the
following WP plug-in option:

-wp-driver <file,...> load specified driver files.

Each driver file contains a list of bindings with the following syntax:

library "lib": "lib" . . ."lib"
group.field := string
group.field += string

type symbol = "link" ;
ctor type symbol (type,. . .,type) = "link" ;
logic type symbol (type,. . .,type) = property-tags "link" ;

predicate symbol (type,. . .,type) = "link" ;

It is also possible to define aliases to other ACSL symbols, rather than external links. In this case,
you may replace = by := and use an ACSL identifier in place of the external "link". No property tag is
allowed when defining aliases.

Library specification is optional and applies to subsequent linked symbols. If provided, the WP
plug-in automatically loads the specified external libraries when linked symbols are used in a goal.
Dependencies among libraries can also be specified, after the ’:’.

Generic group.field options have a specific value for each theory. The binding applies to the current
theory. Binding with the := operator resets the option to the singleton of the given string and binding
with the += operator adds the given string to the current value of the option. The following options are
defined by the plugin: why3.file and why3.import.

C-Comments are allowed in the file. For overloaded ACSL symbols, it is necessary to provide one
"link" symbol for each existing signature. The same "link" symbol is used for all provers, and must be
defined in the specified libraries, or in the external ones (see 2.4.10).

Alternatively, a link-name can be an arbitrary string with patterns substituted by arguments,
"(%1+%2)" for instance.

When a library "lib" is specified, the loaded module depends on the option:

Option Format
why3.file path.why[:name][:as]
why3.import theory[:as]

Precise meaning of formats is given by the following examples (all filenames are relatives to the driver
file’s directory):

why3.file="mydir/foo.why" Imports theory foo.Foo from directory mydir.

why3.file="mydir/foo.why:Bar" Imports theory foo.Bar from directory mydir.

40

2.4. COMMAND LINE OPTIONS

why3.file="mydir/foo.why:Bar:T" Imports theory foo.Bar as T from directory mydir.

why3.import="foo.Bar" Imports theory foo.Bar with no additional includes.

why3.import="foo.Bar:T" Imports theory foo.Bar as T with no additional includes.

See also the default WP driver file, in [wp-share]/wp.driver.
Optional property-tags can be given to logic "link" symbols to allow the WP plugin to perform

additional simplifications (See section 4). Tags consist of an identifier with column (‘:’), sometimes
followed by a link (‘"link";’). The available tags are depicted on figure 2.4.

Tags Operator Properties
commutative: specify a commutative symbol: x⊙ y = y ⊙ x
associative: specify an associative symbol: (x⊙ y)⊙ z = x⊙ (y ⊙ z)
ac: shortcut for associative: commutative:
left: balance the operator on left during export to solvers (requires the

associative tag): x⊙ y ⊙ z = (x⊙ y)⊙ z
right: balance the operator on right during export to solvers (requires

the associative tag): x⊙ y ⊙ z = x⊙ (y ⊙ z)
absorbant: "a-link": specify "a-link" as being the absorbant element of the symbol:

"a-link"⊙ x = "a-link"
x⊙ "a-link" = "a-link"

neutral: "e-link": specify "e-link" as being the neutral element of the symbol:
"e-link"⊙ x = x
x⊙ "e-link" = x

invertible: specify simplification relying on the existence of an inverse:
x⊙ y = x⊙ z ⇐⇒ y = z
y ⊙ x = z ⊙ x⇐⇒ y = z

idempotent: specify an idempotent symbol: x⊙ x = x
injective: specify an injective function:

f(x1, . . . , xn) = f(y1, . . . , yn) =⇒ ∀i xi = yi

constructor: specify an injective function, that constructs different values from
any other constructor. Formally, whenever f and g are two dis-
tinct constructors, they are both injective and: f(x1, . . . , xn) ̸=
g(y1, . . . , ym) forall xi and yj .

Figure 2.4: Driver Property Tags

41

2.4. COMMAND LINE OPTIONS

2.4.12 Proof Session & Cache
The WP plugin can use a session directory to store informations to be used from one execution to another
one. It is used to store proof scripts edited from the TIP (see Section 2.3) and to replay them from the
command line. And it is also used to speedup the invocation of provers by reusing previous runs.

Actually, running provers can be demanding in terms of memory and CPU resources. When working
interactively or incrementally, it is often the case where most proof obligations remain unchanged from
one WP execution to the other. To reduce this costs, a cache of prover results can be used and stored in
your session.

There are different ways of using the cache, depending on your precise needs. The main option to
control cache usage is -wp-cache, documented below:

-wp-cache <mode> selects the cache mode to use with Why-3 provers. The default mode is update
if there is WP session available, and none otherwise.

-wp-cache-dir <dir> select the directory where cached results are stored. By default, the cache is
store in the WP session directory, when available.

-wp-cache-env makes environment variables FRAMAC_WP_CACHE, FRAMAC_WP_CACHEDIR and
FRAMAC_WP_SCRIPT override command line options -wp-cache, -wp-cachedir and
-wp-script, respectively.

The available cache modes are described below:

-wp-cache update : use cache entries or run the provers, and store new results in the cache. This
mode is useful when you are working interactively : proofs can be partial and volatile, and you
want to accumulate and keep as much previous results as you can.

-wp-cache cleanup : same as update mode but at the end of Frama-C execution, any cache entry
that was not used nor updated will be deleted. This mode shall be only used when you want to
cleanup your cache with old useless entries, typically at the end of an interactive session.

-wp-cache replay : same as update mode but new results are not stored in the cache. This mode
is useful for continuous integration, when you are not sure your cache is complete but don’t want
to modify it.

-wp-cache offline : similar to replay mode but cache entries are the unique source of results.
Provers are never run and missing cache entries would result in a « Failed » verdict. This mode is
useful to fasten continuous integration and enforcing cache completeness.

-wp-cache rebuild : force prover execution and store all results in the cache. Previous results will
be replaced with new onces, but entries for non relevant proofs would be kept and you might need
a cleanup stage after. This mode is useful when you modify your Why-3 or prover installation and
you don’t want to reuse your previous cache entries.

-wp-cache none : do not use nor modify cache entries; provers are run normally. This option
must be used if you have a session set and you don’t want to use the cache, since the default is
mode update in this case. But you probably always to benefit from a cache when you have an
(interactive) session.

When using cache with a non-offline mode, time and steps limits recorded in the cache are
compared to the command line settings to produce meaningful and consistent results. Hence, if you
provide more time or more steps from the command line than before, the prover would be run again. If
you provide less or equal limits, the cache entries are reused, but WP still report the cached time and
step limits to inform you of your previous attempts. For instance, if you have in the cache a « Valid »
entry with time 12.4s and re-run it with a timeout of 5s, you will have a « Timeout » result with time
12.4s printed on the console.

42

2.5. PROOF STRATEGIES

2.4.13 Proof Obligation Reports
The WP plug-in can export statistics on generated proof obligations. These statistics are called WP
reports and are distinct from those property reports generated by the Report plug-in. Actually, WP
reports are statistics on proof obligations generated by WP, whereas property reports are consolidated
status of properties, generated by the Frama-C kernel from various analyzers. We only discuss WP
reports in this section.

Reports are generated with the following command-line options:

-wp-report <Rspec1,...,Rspecn> specifies the list of reports to export. Each value Rspeci is a
report template specification file. See Section 2.8 for details on their structure.

-wp-report-basename <name> set the basename for exported reports (described below).

-wp-report-json <file>.json output the proof report in JSON format. See Section 2.7 for
details on the JSON report format.

2.4.14 Persistent Options
As a general observation, almost none of the internal WP data is kept in memory after each execution.
Most of the generated proof-obligation data is stored on disk before being sent to provers, and they are
stored in a temporary directory that is removed upon Frama-C exit (see also -wp-out option).

The only information which is added to the Frama-C kernel consists in a new status for those
properties proved by WP plug-in with their dependencies.

Thus, when combining WP options with -then, -save and -load options, the user should be
aware of the following precisions:

-wp, -wp-prop, -wp-fct, -wp-bhv. These options make the WP plug-in generate proof-
obligations for the selected properties. The values of these options are never saved and they
are cleared by -then. Hence, running -wp-prop A -then -wp-fct F does what you expect:
properties tagged by A are proved only once.

-wp-print, -wp-status, -wp-prover, -wp-gen, -wp-detect. These options do not gen-
erate new proof-obligations, but run other actions on all previously generated ones. For the same
reasons, they are not saved and cleared by -then.

-wp-xxx. All other options are tunings that can be easily turned on and off or set to the desired value.
They are saved and kept across -then commands.

2.5 Proof Strategies

Introduced since Frama-C 28.0 (Nickel)
Proof obligations generated by WP are usually discharged by an SMT solver specified by the user

through command line option -wp-prover. As described in previous sections, complex proof obligations
may also be split into simpler sub-goals by applying Tactics from the TIP user interface.

Proof strategies provide user-defined heuristics to automatically try various combinations of provers,
timeouts and tactics, depending on the proof context. This is a much more effective technique than
relying on manually edited scripts through the TIP user interface. Here are some benefits of using proof
strategies:

– Proof strategies are automatic: there is no need for entering GUI session.
– Proof strategies can be associated to individual functions, lemmas or properties, or tried globally.
– Tactics are applied following patterns: depending on your case study, you can define fine-tuned

strategies to solve your common issues.

43

2.5. PROOF STRATEGIES

– Proof strategies are compatible with TIP-based scripts: you can use strategies to complete scripts
and conversely.

– Scripts are easier to replay and to update: each proof node now records which strategy was involved
in the past, so that incomplete or broken proofs can be recovered easily.

To activate proof strategies and seach for new scripts for unproven goals, user shall activate the tip
prover from the command line, with -wp-prover tip, or use the interfactive TIP from the graphical
user interface.

Proof Strategies are defined thanks to dedicated ACSL extensions and controlled by specific
command-line options. Note that those extensions are only available unless command-line option
-wp-no-strategy-engine is specified. The syntax of ACSL extensions for proof strategies is defined
below:

@strategy name :
alternative ,
. . . ,
alternative ;

@proof name : target , . . . , target ;

A strategy must be defined by a unique name and consists of a list of alternatives that will be tried
in order until proof completion.

Proof hints can be specified to associate strategies to lemma, function or property names. Hints
consists of a strategy name to be used for one or many proof targets. Targets follow the same conventions
than -wp-prop command-line option, although quotes might be necessary, e.g. "@requires". A
proof hint specification applies for all properties matching the property filter. Many proof hints might
apply, in which case, proof hints will be tried in order.

Strategies shall be defined before being used as proof hints. It is recommended to write strategies in
separated *.c or *.i files and to write proof hints right after their target definition.

Strategy consists of list of alternatives with the following syntax:

alternative ::=
| \prover("p" , . . . ,"p", timeout)
| \tactic("id", param , . . . , param)
| \auto("id" , . . . ,"id")
| \default
| strategy

Each form alternative consists of one possible solution to discharge a proof obligation:
– \provers(p,...,p,time) will try the specified provers in sequence with a specified timeout.

Provers and/or timeout can be omitted, in such a case the command-line options -wp-prover
and -wp-timeout are used instead. Sub-second timeout can also be specified, eg. 0.2 for 200
milliseconds. Prover names must be individually quoted, with the same syntax as -wp-prover
command line option.

– \tactic(id,prm...) will try to apply the specified tactic with the associated parameters.
Tactic parameters allow to select the target of the tactic, and the strategy to be used on generated
sub-goals.

– \auto(id,...) will try to apply the (deprecated) auto-strategies available in WP versions prior
to Cobalt.

– name or \default tries the specified strategy.
The default strategy consists in applying the strategies specified through the command-line option

-wp-strategy s,..., in order.
Tactic parameters are specified using the following syntax:

44

2.5. PROOF STRATEGIES

param ::=
| \goal(pattern,. . .)
| \when(pattern,. . .)
| \ingoal(pattern,. . .)
| \incontext(pattern,. . .)
| \pattern(pattern,. . .)
| \select(pattern)
| \param(id,value)
| \child(id,strategy)
| \children(strategy)

Tactic parameters are interpreted as follows:
– \goal(ps), \when(ps) and other patterns are used to match parts of the current proof node.

The form \when(ps) looks for top-level hypotheses patterns, \goal(ps) for top-level goal
patterns. Form \ingoal(ps) and \incontext(ps) respectectively matches patterns deeper
inside the goal or the hypotheses, and finally \pattern(ps) searches in the entire proof obligation.
When several patterns are given, all must apply and agree on common pattern variables. Pattern
syntax is specified below.

– \select(v) defines the main target of the selected tactic. The value v uses the same syntax as
patterns, with pattern variables replaced with their matched values. Few tactics support multiple
selection, in which case, multiple values can be provided. When no selection is specified, the first
specified pattern is used as an implicit target. When no selection nor pattern is selected, the
default selection is the proof goal.

– \param(p,v) configures the parameter value p of the selected tactic with the associated value.
– \child(a,s) applies strategy s to prove the sub-goal named a of the tactic.
– \children(s) applies strategy s on (other) sub-goals of the tactic. If unspecified, the strategy

used for the current node is applied.
Tactics identifiers and their parameters can be obtained from the command line:
– frama-c -wp-tactic ? lists all the registered tactic identifiers;
– frama-c -wp-tactic id,... prints detailed infos for the selected tactics.
Patterns and values are a closed to raw proof obligation formulae, with the following restrictions and

meaning:
– variables are pattern variables;
– pattern _ matches any value;
– pattern x:p matches pattern p and bind its value to variable x;
– pattern a..b matches integer constants in the specified (constant) range.
– pattern \any(p,...) matches any of the specified patterns.
– patterns p[k] and p[k->v] matches array operations, e.g. for memory models;
– ACSL operators have their usual meaning;
– ACSL list operators [|...|], ^ and *^ are also recognized;
– function calls must use their printed name, as they appear in proof nodes;
– for function patterns, trailing dots can be used to match any number of arguments, like in
f(x,y,(..)) for instance.

It is highly recommended using the graphical user interface or -wp-print to build patterns expression
and values.

45

2.6. STRUCTURE OF JSON SCRIPTS

2.6 Structure of JSON Scripts

The proof scripts generated by using the Interactive Proof Editor (Section 2.3) are saved in the
Frama-C/WP session as JSON files. This section defines the format of session scripts precisely.

JSON scripts files are located in the <session>/wp/scripts sub-directory of the Frama-C session
directory (set with command line option -session) or in the <wpsession>/scripts sub-directory
of the Frama-C/WP session directory (set with command line option -wp-session).

The proof scripts for goal named <goal> is stored in a single file <goal>.json ; the format of the
<goal> name is identical to the one used by the Frama-C/Report plug-in for its JSON output.

The content of each script file is an array of alternatives, each alternative being a record with two
possible structures, that might represent a prover attempt or the application of a tactic:

wp.script ::= [wp.alternative, . . .]
wp.alternative ::= wp.prover | wp.tactic

Prover Attempts The proof script records previous attempts to discharge a proof obligation with
external provers (also called decision procedures). Each attempt is represented by a JSON record with
the following fields:

wp.prover ::=

”prover” : string,

”verdict” : wp.verdict,
”time” : number?

”steps” : number?
”depth” : number?

wp.verdict ::= ”none” | ”valid” | ”unknown” |

”timeout” | ”stepout” | ”invalid” | ”failed”

Remark that, since the proof scripts do not record the proof obligation that was exercised, there
is no guarantee that replaying the script on a (potentially new) proof obligation would issue the same
result. Hence, prover attempts must not be used as a cache, but can serve as a hint for choosing among
several alternatives.

Proof Tactic Applying a tactic is represented by a JSON record with the following fields:

wp.tactic ::=

”tactic” : string,
”header” : string?
”select” : wp.selection,
”params” : { string : wp.param, . . . }?

”children” : { string : wp.script, . . . }?
”strategy” : string?

The header field is just a descriptive title and has no special meaning. The tactic identifies

the tactic, as it has been registered in the Frama-C/WP internal API. The selection is an opaque
encoding of the target of the tactic inside the proof obligation structure. The params array stores the
value of tactic parameters, if any. The children stores the proof scripts associated with each sub-goal
generated by applying the specified tactic on a proof obligation. Finally, the strategy fields is used to
recall which user-defined proof strategy was used to trigger the tactic (See Section 2.5).

46

2.6. STRUCTURE OF JSON SCRIPTS

Tactic Parameters Values of tactical parameters are encoded with the following JSON format,
depending on the internal type of the parameter value:

wp.param ::= bool | number | string
| wp.named | wp.selection

wp.named ::=null |

 ”id” : string,
”title” : string?

”description” : string?

Named items (wp.named) corresponds, for instance, to searched lemmas. Selections corresponds to

terms or expressions selected by the user via the graphical user interface, like the target of the tactic, as
described below.

Tactic Selection The target of the tactic is identified by a complex structure encoding on which part
of the proof obligation it shall be applied. Since the exact structure of the proof obligation may vary
from time to time, this structure allows for searching in the proof obligation a pattern that ressemble the
original target that was originally selected by the user during an interactive session with the Frama-C/WP
graphical user interface.

Such patterns are encoded as follows:

wp.selection ::= null

| { ”select” : ”clause goal”, wp.pattern }
| { ”select” : ”inside goal”, wp.occur , wp.pattern }
| { ”select” : ”clause step”, wp.at, wp.kind, wp.pattern }
| { ”select” : ”inside step”, wp.at, wp.kind, wp.occur , wp.pattern }
| { ”select” : ”range”, ”min” : number , ”max” : number }
| { ”select” : ”kint”, ”val” : number }
| { ”select” : ”compose”, ”id” : string, ”args” : [wp.selection, . . .] }

wp.pattern ::= ”pattern” : string
wp.occur ::= ”occur” : number

wp.at ::= ”at” : number
wp.kind ::= ”kind” : ”have”|”type”|”init”|”branch”|”either”|”state”

The various components of selection patterns have the following meaning: wp.pattern encodes a
term or predicate pattern; wp.occur designates which occurrence of the pattern to select, in case of
there is many of them inside the selected goal or hypothesis; wp.at designates the order of the selected
hypothesis inside the proof obligation (the pattern is searched around this value), and wp.kind its kind.

The wp.pattern is a simple string that encodes the head of the structure of the selected term or
formulæ inside the designated goal or hypothesis. It is the concatenation of the first 32 head nodes of
width-first traversal of the selected term, each node being represented by the following string:

– constant are represented by their value,
– free variables by their base-name prefixed with $,
– bound variables by their de-Bruijn index prefixed with #,
– true and false by T and F, and quantifiers by \F and \E,
– operators by &,|,!,~,+,-,*,/,%<,>,=,>=,/,?
– array operations by [], [.] and [=]

47

2.7. STRUCTURE OF JSON REPORTS

– record operations by .fd and {fd,...}
– function calls by their name
For instance, the term (x1 ≤ x2 + 1) will be represented by the pattern "<=$x+$x1".

Script Priority When several alternatives are available for discharging a proof obligation, the script
and tip provers of Frama-C/WP choose which one to apply first according to the following heuristic:

1. try internal prover "Qed" with a "valid" verdict;
2. try any SMT prover with a "valid" verdict;
3. try the "Coq" proof assistant with a "valid" verdict;
4. try any Tactic alternative;
5. finally try the remaining Prover alternatives.
Inside the same level of priority, alternatives are kept in their original order.

2.7 Structure of JSON Reports

The generated JSON report format consists of an array of JSON records, one for each generated toplevel
goal. Each record consists of the following fields, some of them being optional when indicated:

"goal":<string> goal identifier (same as in console report);
"property":<string> property identifier (see Frama-C/Report documentation);
"file":<string> source file location;
"line":<number> source line location;
"axiomatic"?:<string> axiomatic name (optional);
"function"?:<string> function name (optional);
"behavior"?:<string> behavior name (optional, non-default);
"smoke":<boolean> smoke-tests goal (warning: Cf. fields "verdict" and "passed" below);
"verdict":<string> prover returned status. Can be "none", "valid", "failed",

"unknown", "stepout" or "timeout" (warning: Cf. field "passed" below);
"passed":<boolean> is "true" when the prover verdict is valid for non-smoke tests, or when the

prover verdict is not valid for smoke tests;
"script"?:<string> script file, when available (optional);
"tactics"?:<number> number of tactics involved in the script (optional);
"provers":[<prover>,...] prover detailed output. Each entry of the array is a record that

consists of the following fields:

"prover":<string> prover name (with version, see option -wp-prover);
"time":<number> prover time, in milliseconds. For Qed prover, includes also the total

simplification time for other provers and tactics that contributes to the goal;
"success":<number> number of valid sub-goals the prover contributes to.

"subgoals"?:<number> number of associated sub-goals (optional, when more than one);
"proved"?:<number> number of sub-goals proved (optional, when non-zero);
"failed"?:<number> number of sub-goals ending with prover failure or failed smoke-tests (optional,

when non-zero);

48

2.8. STRUCTURE OF REPORT TEMPLATES

"timeout"?:<number> number of sub-goals ending in timeout or step-out (except for smoke-tests)
(optional, when non-zero);

"unknown"?:<number> number of sub-goals with unknown verdict (except for smoke-tests)
(optional, when non-zero);

"cached"?:<number> number of cached sub-goals verdicts (including Qed proved sub-goals)
(optional, when non-zero).

Notice that the JSON report file is printed in compact form without extra space nor indentation,
unless verbose level is greater than 2 or debug level is greater than 1.

2.8 Structure of Report Templates

Reports are created from user defined wp-report specification files. The general format of a wp-report
file is as follows:

<configuration section...>
@HEAD
<head contents...>
@CHAPTER
<per chapter contents...>
@SECTION
<per section contents of a chapter...>
@TAIL
<tail contents...>
@END

The configuration section consists of optional commands, one per line, among:

@CONSOLE the report is printed on the standard output.
Also prints all numbers right-aligned on 4 ASCII characters.

@FILE "<file>" the report is generated in file file.

@SUFFIX "<ext>" the report is generated in file base.ext,
where base can be set with -wp-report-basename option.

@ZERO "<text>" text to be printed for 0-numbers. Default is "-".

@GLOBAL_SECTION "<text>" text to be printed for the chapter name about globals

@AXIOMATIC_SECTION "<text>" text to be printed for the chapter name about axiomatics

@FUNCTION_SECTION "<text>" text to be printed for the chapter name about functions

@AXIOMATIC_PREFIX "<text>" text to be printed before axiomatic names. Default is
"Axiomatic" (with a trailing space).

@FUNCTION_PREFIX "<text>" text to be printed before function names. Default is empty.

@GLOBAL_PREFIX "<text>" text to be printed before global property names. Default is
"(Global)" (with a trailing space).

@LEMMA_PREFIX "<text>" text to be printed before lemma names. Default is "Lemma" (with a
trailing space).

@PROPERTY_PREFIX "<text>" text to be printed before other property names.

49

2.8. STRUCTURE OF REPORT TEMPLATES

The generated report consists of several optional parts, corresponding to Head, Chapter and Tail
sections of the wp-report specification file. First, the head contents lines are produced. Then the chapters
and their sections are produced. Finally, the Tail content lines are printed.

The different chapters are about globals, axiomatics and functions. Outputs for these chapters can
be specified using these directives:

@CHAPTER <chapter header...>

@GLOBAL <global section contents...>

@AXIOMATIC <per axiomatic section contents...>
For each axiomatic, a specific section is produced under the chapter about axiomatics.

@FUNCTION <per function section contents...>
For each function analyzed by WP, a specific section is produced under the chapter about functions.

@SECTION <default section contents...>

@PROPERTY <per property contents...>
For each property of a section, a specific textual content can be specified.

Textual contents use special formatters that will be replaced by actual statistic values when the
report is generated. There are several categories of formatters (PO stands for Proof Obligations):

Formatters Description
&<col>: insert spaces up to column col
&& prints a "&"
%% prints a "%"
%<stat> statistics for section
%prop percentage of proved properties in section
%prop:total number of covered properties
%prop:valid number of proved properties
%prop:failed number of remaining unproved properties
%<prover> PO discharged by prover
%<prover>:<stat> statistics for prover in section

Provers
(<prover>) A prover name (see -wp-prover)
Statistics
(<prover>)
total number of generated PO
valid number of discharged PO
failed number of non-discharged PO
time maximal time used by prover for one PO
steps maximal steps used by prover for one PO
range range of maximal steps used by prover (more stable)
success percentage of discharged PO

Remarks: &ergo is a shortcut for &alt-ergo. Formatters can be written "%.." or "%{..}".
When range is used instead of steps, the maximal number n of steps is printed as a range a..b that
contains n. When option -wp-report-json is used, the previous rank a and b are kept when available
and still fits with the new maximal step number. Otherwise, a and b are re-adjusted following an
heurisitics designed to increase the stability for non-regression testing.

Textual contents can use naming formatters that will be replaced by current names:

50

2.8. STRUCTURE OF REPORT TEMPLATES

Names Description
%chapter current chapter name
%section current section name
%global current global name (under the chapter about globals)
%axiomatic current axiomatic name (under the chapter about axiomatics)
%function current function name (under the chapter about functions)
%name current name defined by the context:

- property name inside @PROPERTY contents,
- function name inside @FUNCTION contents,
- axiomatic name inside @AXIOMATIC contents,
- global name inside @GLOBAL contents,
- section name inside @SECTION contents,
- chapter name inside @CHAPTER contents.

51

3WP Models

Basically, a memory model is a set of datatypes, operations and properties that are used to abstract the
values living inside the heap during the program execution.

Each memory model defines its own representation of pointers, memory and data actually stored in
the memory. The memory models also define some types, functions and properties required to translate
C programs and ACSL annotations into first order logic formulæ.

The interest of developing several memory models is to manage the trade-off between the precision
of the heap’s values representation and the difficulty of discharging the generated proof obligations by
external decision procedures. If you choose a very accurate and detailed memory model, you shall be
able to generate proof obligations for any program and annotations, but most of them would not be
discharged by state-of-the art external provers. On the other hand, for most C programs, simplified
models are applicable and will generate less complex proof obligations that are easier to discharge.

A practical methodology is to use the simpler models whenever it is possible, and to up the ante
with more involved models on the remaining, more complex parts of the code.

This chapter is dedicated to the description of the memory models implemented by the WP plug-in.
In this manual, we only provide a high-level description of the memory models you might select with
option -wp-model (section 3.2 and 3.3). Then we focus on two general powerful optimizations. The first
one, activated by default (section 3.4), mixes the selected memory model with the purely logical Hoare
model for those parts of your program that never manipulate pointers. The second one (section 3.5) is
dedicated to those pointers that are formal parameters of function passed by reference.

3.1 Language of Proof Obligations

The work of WP consists in translating C and ACSL constructs into first order logical formulæ. We
denote by L the logic language for constructing proof obligations. Shortly, this logical language is made
of terms (t : term) and propositions (P : prop) that consist of:

– Natural, signed, unbounded integer constants and their operations;
– Natural real numbers and their operations;
– Arrays (as total maps) and records (tuples with named fields);
– Abstract (polymorphic) data types;
– Anonymous function symbols with (optional) algebraic properties;
– Logical connectors;
– Universally and existentially quantified variables.
Actually, the task of the memory model consists in mapping any heap C-values at a given program

point to some variable or term in the logical L language.

52

3.2. THE HOARE MEMORY MODEL

3.2 The Hoare Memory Model

This is the simplest model, inspired by the historical definition of Weakest Precondition Calculus for
programs with no pointers. In such programs, each global and local variable is assigned a distinct
variable in L.

Consider for instance the statement x++; where x has been declared as an int. In the Hoare
memory model, this C-variable will be assigned to two L-variables, say x1 before the statement, and x2
after the statement, with the obvious relation x2 = x1 + 1 (if no overflow occurred).

Of course, this model is not capable of handling memory reads or writes through pointer values,
because there is no way of representing aliasing.

You select this memory model in the WP plug-in with the option -wp-model Hoare; the analyzer
will complain whenever you attempt to access memory through pointers with this model.

3.3 Memory Models with Pointers

Realistic memory models must deal with reads and writes to memory through pointers. However, there
are many ways for modeling the raw bit stream the heap consists of. All memory models M actually
implement a common signature:

Pointer Type: τ , generally a pair of a base address and an offset.

Heap Variables: for each program point, there is a set of logical variables to model the heap. For
instance, you may have a variable for the values at a given address, and another one for the
allocation table. The heap variables m1 . . . mk are denoted by m.

Read Operation: given the heap variables m, a pointer value p : τ , and some C-type T , the model
will define an operation:

readT (m, p) : term

that defines the representation in L of the value of C-type T which is stored at address p in the
heap.

Write Operation: given the heap variables m before a statement, and their associated heap variables
m′ after the statement, a pointer value p : τ and a value v of C-type T , the model will define a
relation:

writeT (m, p, v, m′) : prop

that relates the heap before and after writing value v at address p in the heap.

Typically, consider the statement (*p)++ where p is a C-variable of type (int*). The memory
model M will assign a unique pointer value P : τ to the address of p in memory.

Then, it retrieves the actual value of the pointer p, say Ap, by reading a value of type int* into the
memory variables m at address P :

Ap = readint∗(m, P)

Next, the model retrieves the previous int-value at actual address Ap, say Vp:

Vp = readint(m, Ap)

Finally, the model relates the final memory state m′ with the incremented value Vp + 1 at address P :

writeint(m, Ap, Vp + 1, m′)

53

3.4. HOARE VARIABLES MIXED WITH POINTERS

3.4 Hoare Variables mixed with Pointers

As illustrated above, a very simple statement is generally translated by memory models into complex
formulæ. However, it is possible in some situations to mix the Hoare memory model with the other ones.

For instance, assume the address of variable x is never taken in the program. Hence, it is not possible
to create a pointer aliased with &x. It is thus legal to manage the value of x with the Hoare memory
model, and other values with another memory-model M that deals with pointers.

Common occurrences of such a situation are pointer variables. For instance, assume p is a variable of
type int*; it is often the case that the value of p is used (as in *p), but not the address of the variable
p itself, namely &p. Then, it is very efficient to manage the value of p with the Hoare memory model,
and the value of *p with a memory model with pointers.

Such an optimization is possible whenever the address of a variable is never taken in the program. It
is activated by default in the WP plug-in, since it is very effective in practice. You can nevertheless
deactivate it with selector “-wp-model raw”.

3.5 Hoare Variables for Reference Parameters

A common programming pattern in C programs is to use pointers for function arguments passed by
reference. For instance, consider the swap function below:

void swap(int *a,int *b)
{

int tmp = *a ;

*a = *b ;

*b = tmp ;
}

Since neither the address of a nor the one of b are taken, their values can be managed by the Hoare
Model as described in the previous section. But we can do even better. Remark that none of the pointer
values contained in variables a and b is stored in memory. The only occurrences of these pointer values
are in expressions *a and *b. Thus, there can be no alias with these pointer values elsewhere in memory,
provided they are not aliased initially.

Hence, not only can a and b be managed by the Hoare model, but we can also treat (*a) and (*b)
expressions as two independent variables of type int with the Hoare memory model.

For the callers of the swap function, we can also take benefit from such by-reference passing arguments.
Typically, consider the following caller program:

void f(void)
{

int x=1,y=2 ;
swap(&x,&y);

}

Strictly speaking, this program takes the addresses of x and y. Thus, it would be natural to handle
those variables by a model with pointers. However, swap will actually always use *&x and *&y, which
are respectively x and y.

In such a situation it is then correct to handle those variables with the Hoare model, and this is a
very effective optimization in practice. Notice however, that in the example above, the optimization is
only correct because x and y have disjoint addresses.

These optimizations can be activated in the WP plug-in with selector “-wp-model ref”, and the
necessary separation conditions are generated on-the-fly. This memory model first detects pointer or
array variables that are always passed by reference. The detected variables are then assigned to the
Hoare memory model.

54

3.6. MIXED MODELS HYPOTHESES

This optimization is not activated by default, since the non-aliasing assumptions at call sites are
sometimes irrelevant.

3.6 Mixed models hypotheses

For the previously presented Ref model, but also for the Typed, and Caveat models presented later, WP
lists the separation and validity hypotheses associated to the choice that it make of dispatching each
pointer and variable either to the Hoare or to the model M used for the heap.

Consequently, in addition to user-defined function requires, WP also assumes, and thus states as
requires for the function caller, that:

– Hoare variables are separated from each other,
– Hoare variables are separated from the locations in M,
– references are valid memory locations,
– locations assigned via a pointer are separated from Hoare variables whose address is not taken by

the function (including via its contract).
Furthermore, the function must ensure that:
– locations assigned via a pointer (including the returned value when it is a pointer) are separated

from Hoare variables whose address is not taken by the function (including via its contract),
– pointers assigned by the function (including the returned value when it is a pointer) are separated

from function parameters and Hoare variables whose address is not taken by the function (including
via its contract).

In order to precisely generate these hypotheses, WP needs precise assigns specification. In particular
each function under verification and all its callees needs an assigns specification. Furthermore, if the
function assigns or returns a pointer, WP needs a correct \from specification for those pointers. If the
specification is incomplete, a warning wp:pedantic-assigns is triggered. Note that WP does not
verify that the \from is correct.

The hypotheses are displayed when the option -wp-warn-memory-model is enable (it is enabled
by default). They can be verified by WP using the experimental option -wp-check-memory-model.

3.7 The Typed Memory Model

This memory model is actually a reformulation of the Store memory model used in previous versions of
the WP plug-in. In theory, its power of expression is equivalent. However, in practice, the reformulation
we performed makes better usage of built-in theories of Alt-Ergo theorem prover and Coq features. The
main modifications concern the heap encoding and the representation of addresses.

Addresses. We now use native records of L and provers to encode addresses as pairs of base and
offset (integers). This greatly simplifies reasoning about pointer separation and commutation of memory
accesses and updates.

Store Memory. In the Store memory model, the heap is represented by one single memory variable
holding an array of data indexed by addresses. Then, integers, floats and pointers must be boxed into
data and unboxed from data to implement read and write operations. These boxing-unboxing operations
typically prevent Alt-Ergo from making maximal usage of its native array theory.

Typed Memory. In the Typed memory model, the heap is now represented by three memory variables,
holding respectively arrays of integers, floats and addresses indexed by addresses. This way, all boxing

55

3.8. THE CAVEAT MEMORY MODEL

and unboxing operations are avoided. Moreover, the native array theory of Alt-Ergo works very well
with its record native theory used for addresses: memory variables access-update commutation can now
rely on record theory to decide that two addresses are different (separated).

3.8 The Caveat Memory Model

This memory model simulates the behavior of the Caveat analyser, with additional enhancements. It is
implemented as an extension of the Typed memory model, with a specific treatment of formal variables
of pointer type.

To activate this model, simply use ’-wp-model Typed+Caveat’ or ’-wp-model Caveat’ for
short.

A specific detection of variables to be treated as reference parameters is used. This detection is more
clever than the standard one since it only takes into account local usage of each function (not global
ones).

Additionally, the Caveat memory model of Frama-C performs a local allocation of formal parameters
with pointer types that cannot be treated as reference parameters. Note that it means that the pointer
is considered valid. If one needs to accept NULL for this pointer, a wp_nullable ghost annotation or
the clause wp_nullage_args can be used to bring this information to WP:

File nullable.c

void foo(int* p /*@ wp_nullable */, int* q /*@ wp_nullable */){

}

// or equivalently:
//@ wp_nullable_args p, q ;
void foo(int* p, int* q){

}

This makes explicit the separation hypothesis of memory regions pointed by formals in the Caveat
tool. The major benefit of the WP version is that aliases are taken into account by the Typed memory
model, hence, there are no more suspicious aliasing warnings.

Warning: using the Caveat memory model, the user must check by manual code review that no
aliases are introduced via pointers passed to formal parameters at call sites.

However, WP warns about the implicit separation hypotheses required by the memory model via the
-wp-warn-memory-model option, set by default.

56

4WP Simplifier

The logical language L used to build proof obligations is now equipped with built-in simplifications.
This allows for proof obligations to be simplified before being sent to external provers, and sometimes to
be reduced to trivial goals.

This chapter is dedicated to the description of the simplifier and how to use it with the WP plug-in.
It also presents how combinatorial explosion of path exploration is now tackled down thanks to passive
form transformation and automated sub-terms factorization [FS01, Lei03]. This also leads to more
compact and (somehow) more readable proof obligations, with less memory, less disk usage and lower
external prover time overhead, compared to WP versions 0.6 and lower.

4.1 Logic Normalizations

The new logic language L is naturally equipped with term normalization and maximal sub-term sharing.
It is only used with new memory models, not with the standard ones.

Maximal sub-term sharing is responsible for the introduction of let-bindings whenever a sub-expression
appears several times in the generated proof obligations. The occupied memory and disk usage of WP is
also reduced compared to other models.

The normalization rules can not be turned off, and are responsible for local simplifications. Although
modest, they allow a proof obligation to be trivially discharged.

Logic normalization by commutativity and associativity; absorption and neutral elements; elimination
of redundant facts; propagation of negations (Morgan laws); simplification of conditionals.

Arithmetic normalization by commutativity and associativity; absorption and neutral elements; fac-
torization with linear forms; constant folding; normalization of linear equalities and inequalities.

Array elimination of consecutive accesses and updates.

Record elimination of consecutive accesses and updates;
simplification of structural equalities and inequalities.

4.2 Simplifier Engine (Qed)

Built on top of our normalizing logic language L, we have a simplifier engine named Qed[Cor14]. The
simplifier engine is used by the WP plug-in to simplify the generated proof contexts and proof obligations.
The basic feature of Qed is to manage a knowledge base Γ. It is possible to add new facts (hypotheses)
to Γ, and to simplify (rewrite) a term of a property with respect to Γ.

By default, the only rewriting performed by Qed is the propagation of equality classes by normalization.
The Qed engine can be enriched by means of plug-ins to perform more dedicated simplifications. For

57

4.3. EFFICIENT WP COMPUTATION

instance, we have developed a simplifier plug-in for array and record theories, and a prototype for linear
inequalities.

WP uses the simplification engine to simplify proof contexts by recursively combining basic laws
involving the simplifier engine. Each law is applied with respect to a local knowledge base Γ (initially
empty).

Adding a new fact H to Γ is denoted by Γ⊕H ; rewriting a term of predicate e into e′ with respect
to Γ is denoted by Γ |= e ▷ e′.

Inference Law. A hypothesis is simplified and added to the knowledge base to simplify the goal.

Γ |= H ▷ H ′ Γ⊕H ′ |= G ▷ G′

Γ |= (H → G) ▷ (H ′ → G′)

Conjunction Law. Each side of a conjunction is simplified with the added knowledge of the other side.
This law scales up to the conjunction of n facts, and simplifications can be performed incrementally.

Γ⊕B |= A ▷ A′ Γ⊕A |= B ▷ B′

Γ |= (A ∧B) ▷ (A′ ∧B′)

Conditional Law. The conditional expression is simplified, before simplifying each branch under the
appropriate hypothesis.

Γ |= H ▷ H ′ Γ⊕H ′ |= A ▷ A′ Γ⊕ ¬H ′ |= B ▷ B′

Γ |= (H ?A : B) ▷ (H ′ ?A′ : B′)

Inside the WP plug-in, the proof contexts are only built in terms of conjunctions, conditional and
inference rules. Hence, these laws are sufficient to perform proof context simplifications. Technically,
simplification has a quadratic complexity in the width and depth of the proof formula. Options will
be added to control the risk of combinatorial explosion. In practice, simplification is delayed until
submission of the proof obligation to external provers, that have similar complexity. Since we account
on simplification for enhancing prover efficiency, we expect it to be worth the cost.

The power of the simplification process depends on the simplification plug-ins loaded in the Qed
engine, and will be the purpose of further developments. Chapter 5 provides additional informations on
the implemented simplifications and the supported ACSL built-in operations.

4.3 Efficient WP Computation

During the Weakest Precondition calculus, proof obligations are constructed backwardly for each program
instruction. Conditional statements are of particular interest, since they introduce a fork in the generated
proof contexts.

More precisely, consider a conditional statement if (e) A else B. Let WA be the weakest
precondition calculus from block A, and WB the one from block B. Provided the translation of
expression e in the current memory model leads to assumption E, the naive weakest precondition of the
conditional is: (E ?WA : WB).

With this formula, the weakest preconditions of the program after the conditional are duplicated
inside WA and WB . Moreover, these common postconditions have been transformed by the effects of A
and B. Then, the factorization of common sub-terms of logic language L is not capable of avoiding the
duplication. In the presence of successive conditionals, proof obligations generated become twice as big
at each conditional statement.

To tackle this problem, the solution is to put the program in passive form [FS01, Lei03]. Each
variable of the program is assigned a different logic variable in each branch. The different variables are
joined at conditionals into new fresh variables and equality conditions.

58

4.3. EFFICIENT WP COMPUTATION

In practice, the passive form transformation is done during the weakest precondition calculus, together
with the translation of C and ACSL by the memory model. Hence, a translation map σ is maintained at
each program point from memory model variables to L logic variables.

Joining maps σ1 and σ2 from the branches of a conditional leads to a new map σ assigning a new
logic variable x to memory variable m whenever σ1(m) and σ2(m) are different. This join also produces
the two sets of equalities H1 and H2 associated to this variable renaming. Hence σ(m) = σ1(m) below
is member of H1 and σ(m) = σ2(m) is member of H2.

Now, if W is the postcondition of the conditional program below, WA and WB can always be
decomposed into: WA = W 0

A ∧ W and WB = W 0
B ∧ W . Finally, the weakest precondition of the

conditional is:
(E ? H1 ∧W 0

A : H2 ∧W 0
B) ∧W

This form actually factorizes the common postcondition to A and B, which makes the weakest
precondition calculus linear in the number of program statements.

59

5Builtins

This chapter provides additional informations on the supported ACSL built-in symbols and, more
generally, on the simplification rules implemented in the Qed simplifier, as introduced in Chapter 4.

5.1 General Simplifications

Arithmetics operators (+,×, . . .) are normalized with respect to their associativity and commutativity
rules. Neutral and absorbent operands are also taken into account, and operations on numerical constants
are propagated as well. Moreover, linear forms are strongly normalized. Hence, it is not possible to
write term (1 + x)− 1 + x since it will be automatically reduced into 2x.

Comparison operators are also simplified. First, linear normalization is performed on both sides
of the comparison, with negative factors or constants moved on the opposite side. Finally, on integer
comparison, an off-by-one normalization is applied to transform, eg. 1 < x into 0 ≤ x (on integers only).

Comparison between injective functions are simplified in the expected way. For instance, f(x, y) =
f(x′, z′) will be rewritten into x = x′ ∧ y = y′ when f is injective, and similarly with dis-equalities.

Idempotent operators f are normalized with f(x, x) = x. Associative and commutative operators
are normalized as usual (terms are sorted structurally).

5.2 ACSL Built-ins

The ACSL built-ins supported by Frama-C/WP are listed in Figure 5.1. In the table, the reference
implementation of the function is given in terms of the Why-3 standard library1, from which all the
properties are automatically imported and communicated to the provers.

Below in the section, additional informations are given for each supported builtin, with a brief
description of the implemented Qed simplifiers.

1 Available online http://why3.lri.fr/stdlib

60

5.2. ACSL BUILT-INS

ACSL Why-3 Reference Qed
(real) x real.FromInt p.61
\ceil, \floor real.Truncate p.61
\abs int.Abs, real.Abs p.61
\min, \max int.MinMax, real.MinMax p.61
\sqrt real.Square p.61
\exp, \log, \log10 real.ExpLog p.62
\pow real.PowerReal p.62
\sin, \cos, \tan real.Trigonometry p.62
\asin, \acos, \atan real.Trigonometry p.62
\sinh, \cosh, \tanh real.Hyperbolic p.62
\atan2, \hypot real.Polar p.62

Figure 5.1: Supported ACSL builtins

(real) x for the conversion from integers to reals. Constants, including float and double literals,
are exactly converted to rationals. This operation is also declared to be injective.

\ceil(x), \floor(x) for the conversion from reals to integers. Constants (rationals) are truncated
towards the expected direction. Other simplifications are:

\ceil((real) n) = n (∀n ∈ Z)
\floor((real) n) = n (∀n ∈ Z)

Other conversion simplifications will be performed when using conversions to C-integer types. Actually,
the truncation operation defined in real.Truncate from Why-3 is used for these other conversions
and combine well together.

\abs(x) for both integers and reals. The implemented simplifiers are:

\abs(x) ≥ 0
\abs(k.x) = |k|.\abs(x)
\abs(x) = x when 0 ≤ x
\abs(x) = −x when x < 0
\abs(x) = 0 iff x = 0

\min(x, y), \max(x, y) are implemented on both real and integers as idempotent, associative and
commutative operators.

\sqrt(x) is declared to be injective, monotonically increasing and is associated with the following
simplifiers:

\sqrt(0) = 0
\sqrt(1) = 1
\sqrt(x) ≥ 0
\sqrt(x) = 0 iff x = 0

\sqrt(x× x) = \abs(x)

61

http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/int
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/int
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real
http://why3.lri.fr/stdlib/real

5.2. ACSL BUILT-INS

Moreover, the following lemmas are added to complement the reference ones:

\sqrt(x) < x when 1 < x
\sqrt(x) > x when 0 ≤ x < 1

\exp(x), \log(x) and \log10(x) are declared to be injective, monotonically increasing and are
associated with the following simplifiers:

\log(1) = 0
\exp(0) = 1
\exp(x) > 0

\exp(\log(x)) = x when 0 < x
\log(\exp(x)) = x

However, we found necessary to complement the reference definitions with the following lemma,
especially when \tanh is involved:

\exp(x) ≥ 0

\pow(x, n) is associated with the following simplifiers:

\pow(x, 0) = 1
\pow(x, 1) = x

Other algebraic simplifications are limited to cases where x > 0, and there is no obvious choice of
normalization when combining \pow with \exp and \log.

\log(\pow(x, n)) = n.\log(x) when 0 < x

However, algebraic rules for such combinations are well established in the reference lemmas imported
from Why-3.

\sin(x), \cos(x) and \tan(x) trigonometric operations. Useful lemmas are already defined in the
reference implementation from Why-3 library.

\asin(x), \acos(x) and \atan(x) trigonometric operations. Except definition of \atan which is
available from reference, definition for arc-\sin and arc-\cos have been added. Moreover, all the
arc-trigonometric operations are declared to be injective. In addition, the following simplifiers are also
registered:

\sin(\asin(x)) = x when − 1 ≤ x ≤ 1
\cos(\acos(x)) = x when − 1 ≤ x ≤ 1
\tan(\atan(x)) = x

Notice that definitions for \asin and \acos are not (yet) available from the original Why-3 reference
and are actually provided by custom extensions installed in the WP shared directory.

\sinh(x), \cosh(x) and \tanh(x) trigonometric operations. Useful lemmas are already defined in the
reference implementation from Why-3 library.

62

5.3. CUSTOM EXTENSIONS

\atan2(x, y) and \hypot(x, y) for dealing with polar coordinates. Definitions imported from the
reference implementation of Why-3 library.

\le_float(x, y), \ge_float(x, y), \lt_float(x, y), \gt_float(x, y), \eq_float(x, y),
\ne_float(x, y), \le_double(x, y), \ge_double(x, y), \lt_double(x, y), \gt_double(x, y),
\eq_double(x, y), and \ne_double(x, y) for dealing with floating point comparisons. They are
similar to comparisons over the real numbers if both x and y are finite, but obey IEEE semantics for
infinities and NaNs

5.3 Custom Extensions

As explained in Section 2.4.11, it is possible to extend all the properties mentioned above. Section 2.3.11
also provides hints on how to define tactics that can be used in the interactive prover of Frama-C/WP.

However, Why-3 offers the easiest way of adding new theorems for interactive proving. Since
all the builtin symbols of ACSL are actually linked to the standard library of Why-3, any user the-
ory also referring to the standard symbols can be added to the proof environment by using option
-wp-why-lib ’file...’.

Otherwise, a driver can be written. For instance, the additional lemma regarding \exp p.62 for Why3
is simply defined in the following way:

// MyExp.mlw file
axiom exp_pos : forall x:real. (0.0 < exp(x))

Of course, this piece of Why3 input file must be integrated after the symbol exp has been defined.
The corresponding driver is then:

// MyExp.driver file
library exponential:
why3.file += "MyExp.mlw" ;

Such a driver, once loaded with option -wp-driver, instructs Frama-C/WP to append your extension
file to the other necessary resources for library "exponential", to which the logic ACSL builtin \exp
belongs to.

The file share/wp/wp.driver located into the shared directory of Frama-C, and the associated
files in sub-directory share/wp/why3 shall provide all the necessary hints for extending the capabilities
of Frama-C/WP in a similar way.

63

Bibliography

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah.

[BFMP11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd your herd of provers. First International Workshop on Intermediate Verification
Languages, August 2011.

[Bur72] R. M. Burstall. Some techniques for proving correctness of programs which alter data structures.
Machine Intelligence, 1972.

[CCK+] Loïc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand Puc-
cetti, Julien Signoles, and Boris Yakobowski. Frama-C User Manual. CEA List, Software Reliabil-
ity Laboratory. https://www.frama-c.com/download/frama-c-user-manual.pdf.

[CCK06] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo : a theorem prover for
polymorphic first-order logic modulo theories, 2006.

[Coq10] Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.4, 2010.

[Cor14] Loïc Correnson. Qed. computing what remains to be proved. In NASA Formal Methods - 6th
International Symposium, NFM 2014, Houston, TX, USA, April 29 - May 1, 2014. Proceedings,
pages 215–229, 2014.

[Dij68] Edsger W. Dijkstra. A constructive approach to program correctness. BIT Numerical Mathe-
matics, Springer, 1968.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[Fil03] J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud, March 2003.

[Flo67] R. W. Floyd. Assigning meanings to programs. Proceedings of the American Mathematical
Society Symposia on Applied Mathematics, 19, 1967.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding Exponential Explosion: Generating Compact
Verification Conditions. In Conference Record of the 28th Annual ACM Symposium on Principles
of Programming Languages, pages 193–205. ACM, January 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
1969.

64

https://www.frama-c.com/download/frama-c-user-manual.pdf

BIBLIOGRAPHY

[Lei03] K. Rustan Leino. Efficient weakest preconditions, 2003.

[Lei08] K. Rustan M. Leino. This is Boogie 2. Microsoft Research, 2008.

[MM09] Yannick Moy and Claude Marché. Jessie Plugin Tutorial, Beryllium version. INRIA, 2009.
http://www.frama-c.cea.fr/jessie.html.

65

http://www.frama-c.cea.fr/jessie.html

	Foreword
	1 Introduction
	1.1 Installation
	1.2 Tutorial
	1.3 Weakest Preconditions
	1.4 Memory Models
	1.5 Arithmetic Models
	1.6 Limitations & Roadmap

	2 Using the WP Plug-in
	2.1 Supported annotations
	2.2 Graphical User Interface
	2.3 Interactive Proof Editor
	2.3.1 Display Modes
	2.3.2 Tactics
	2.3.3 Term Composer
	2.3.4 Proof Script
	2.3.5 Replaying Scripts
	2.3.6 Tracking Scripts
	2.3.7 Strategies (DEPRECATED)
	2.3.8 General Tactics
	2.3.9 Integers & Bit-wised Tactics
	2.3.10 Domain Specific Tactics
	2.3.11 Custom Tactics and Strategies

	2.4 Command Line Options
	2.4.1 Goal Selection
	2.4.2 Program Entry Point
	2.4.3 Model Selection
	2.4.4 Computation Strategy
	2.4.5 Smoke Tests
	2.4.6 Trigger Generation
	2.4.7 Qed Simplifier Engine
	2.4.8 Prover Selection
	2.4.9 Generated Proof Obligations
	2.4.10 Additional Proof Libraries
	2.4.11 Linking ACSL Symbols to External Libraries
	2.4.12 Proof Session & Cache
	2.4.13 Proof Obligation Reports
	2.4.14 Persistent Options

	2.5 Proof Strategies
	2.6 Structure of JSON Scripts
	2.7 Structure of JSON Reports
	2.8 Structure of Report Templates

	3 WP Models
	3.1 Language of Proof Obligations
	3.2 The Hoare Memory Model
	3.3 Memory Models with Pointers
	3.4 Hoare Variables mixed with Pointers
	3.5 Hoare Variables for Reference Parameters
	3.6 Mixed models hypotheses
	3.7 The Typed Memory Model
	3.8 The Caveat Memory Model

	4 WP Simplifier
	4.1 Logic Normalizations
	4.2 Simplifier Engine (Qed)
	4.3 Efficient WP Computation

	5 Builtins
	5.1 General Simplifications
	5.2 ACSL Built-ins
	5.3 Custom Extensions

