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Chapter 1

Introduction

This document describes a Frama-C plug-in that uses external decision procedures to prove
ACSL annotations of C functions.

The WP plug-in is named after Weakest Precondition calculus, a technique used to prove pro-
gram properties initiated by Hoare [Hoa(9], Floyd [Flo67] and Dijkstra [Dij65]. Recent tools
implement this technique with great performances, for instance Boogie [[.ci108| and Why [FF1103].
There is already a Frama-C plug-in, Jessie [MNM09], developed at INRIA, that implements a
weakest precondition calculus for C programs by compiling them into the Why language.

The WP plug-in is a novel implementation of such a Weakest Precondition calculus for an-
notated C programs, which focuses on parametrization w.r.t the memory model. It is a
complementary work to Jessie plug-in, which relies on a separation memory model in the
spirit of Burstall’s work [Bur72]. The Jessie memory model is very efficient for a large variety
of well structured C-programs. However, it does not apply when low-level memory manip-
ulations, such as heterogeneous casts, are involved. Moreover, Jessie operates by compiling
the C program to Why, a solution that prevents the user from combining weakest precondition
calculus with other techniques, such as the Value analysis plug-in.

The WP plug-in has been designed with cooperation in mind. That is, you may use WP for
proving some annotations of your C programs, and prove other ones with other plug-ins. The
recent improvements of the Frama-C kernel are then responsible for managing such partial
proofs and consolidate them altogether.

This manual is divided into three parts. This first chapter introduces the WP plug-in, the
Weakest Precondition calculus and Memory Models. Then, Chapter 2 details how to use
and tune the plug-in within the Frama-C platform. Chapter 3 provides a description for the
included memory models. Finally, we present in Chapter 4 an experimental variant of our
weakest precondition calculus, dedicated to proof simplification.




CHAPTER 1. INTRODUCTION

1.1 Installation

The WP plug-in is distributed with the Frama-C platform. However, you must install at
least an external prover in order to fulfill proof obligations. You have several choices, see
section 2.2.5 for details. To begin with, you may install the Alt-Ergo [C'CI<06] prover. You
can install it from source at http://alt-ergo.lri.fr or with Godi.

1.2 Tutorial

Consider the very simple example of a function that swaps the values of two integers passed
by reference:

File swap.c

| void swap(int *a,int *b)
|

| int tmp = *a ;
| *a = *b ;

| *b = tmp ;

| return ;

|

}

A simple, although incomplete, ACSL contract for this function can be:

File swapl.c

/#@ ensures A: xa — \old (xb) ;
@ ensures B: xb = \old (xa) ;
@/

void swap(int *a,int *b) ;

You can run wp on this example with:

# frama-c -wp swap.c swapl.c

[kernel]l preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swapl.c"
[wp] Running WP plugin...

[wp]l Collecting axiomatic usage

[wp]l] warning: Missing RTE guards

[wp]l 2 goals scheduled

[wp]l [Alt-Ergo] Goal store_swap_post_A : Valid

[wp]l [Alt-Ergo] Goal store_swap_post_B : Valid

As expected, Alt-Ergo discharged the two proof obligations generated by WP for the swap
contract. You should notice the warning “Missing RTE guards”, emitted by the WP plug-in.
That is, the weakest precondition calculus implemented in WP relies on the hypothesis that
your program is runtime-error free. In this example, the swap function dereferences its two
parameters, and these two pointers should be valid.

The WP plug-in does not generate proof obligation to prevent your program from raising a
runtime error, because this property may be validated with any other technique, for instance
by running the value analysis plug-in or the rte generation one.

Hence, consider the following new contract for swap:

File swap2.c

| /#@ requires \valid(a) && \valid(b);
| @ ensures A: sxa =— \old(*b) ;

| @ ensures B: b = \old(*a) ;

| @ assigns =a,xb ;

| o

| void swap(int *a,int *b) ;



1.3. WEAKEST PRECONDITIONS

For simplicity, the WP plug-in is able to run the rte gemeration plug-in for you. Now, WP
reports that the function swap fulfills its contract:

# frama-c -wp -wp-rte swap.c swap2.c

[kernel] preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swap2.c"
[wp]l Running WP plugin...

[wp] Collecting axiomatic usage

[rte]l annotating function swap

[wp] [WP:simplified] Goal store_swap_assign : Valid
[wp] 6 goals scheduled

[wp]l] [Alt-Ergo] Goal store_swap_assert_rte : Valid
[wp]l [Alt-Ergo] Goal store_swap_assert_rte_2 : Valid
[wp]l [Alt-Ergo] Goal store_swap_assert_rte_3 : Valid
[wp] [Alt-Ergo] Goal store_swap_assert_rte_4 : Valid
[wp]l [Alt-Ergol] Goal store_swap_post_A : Valid

[wp]l [Alt-Ergol] Goal store_swap_post_B : Valid

We have finished the job of validating this simple C program with respect to its specification,
as reported by the report plug-in that displays a consolidation status of all annotations:

# frama-c -wp-verbose O [...] -then -report
[kernel] preprocessing with "gcc -C -E -I. swap.c"
[kernel] preprocessing with "gcc -C -E -I. swap2.c"

[rte] annotating function swap
[report] Computing properties status...

--- Properties of Function ’swap’

[ Valid ] Post-condition ’A°
by WP-Store.

[ Valid ] Post-condition °’B?’
by WP-Store.

[ Valid ] Assigns (file swap2.c, line 4)
by WP-Store.

[ Valid ] Assertion ’rte’ (generated)
by WP-Store.

[ Valid ] Assertion ’rte’ (generated)
by WP-Store.

[ Valid ] Assertion ’rte’ (generated)
by WP-Store.

[ Valid ] Assertion ’rte’ (generated)
by WP-Store.

[ Valid ] Default behavior
by Frama-C kermnel.

8 Completely validated
8 Total

1.3 Weakest Preconditions

The principles of weakest precondition calculus are quite simple in essence. Given a code anno-
tation of your program, say, an assertion () after a statement stmt, the weakest precondition
of P is by definition the “simplest” property P that must be valid before stmt such that @
holds after the execution of stmt.

Hoare’s triples. In mathematical terms, we denote such a property by a Hoare’s triple:

{P} stmt{Q}
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which reads: “whenever P holds, then after running stmt, QQ holds”.

Thus, we can define the weakest precondition as a function wp over statements and properties
such that the following Hoare triple always holds:

{wp(stmt,Q)} stmt {Q}

For instance, consider a simple assignment over an integer local variable xz; we have:

{r+1>0} x=x+1;, {z>0}

It should be intuitive that in this simple case, the weakest precondition for this assignment of
a property (Q over x can be obtained by replacing z with x + 1 in ). More generally, for any
statement and any property, it is possible to define such a weakest precondition.

Verification. Consider now function contracts. We basically have pre-conditions, assertions
and post-conditions. Say function f has a precondition P and a post condition @), we now
want to prove that f satisfies its contract, which can be formalized by:

{P} f {Q}

Consider now W = wp(f, Q), we have by definition of wp:

wi f {Q}

Suppose now that we can prove that P entails W: we can use the intermediate result of
the weakest precondition calculus to prove the function contracts. This operation can be
summarized by the following diagram:

P=w) {Wir{e}
{P}f{Q}

This is the main idea of how to prove a property by weakest precondition computation.
Consider an annotation (), compute its weakest precondition W across all the statements
from @ up to the beginning of the function. Then, submit the property P =— W to a
theorem prover, where P are the preconditions of the function. If this proof obligation is
discharged, then one may conclude the annotation () is valid for all executions.

Termination. We must point out a detail about program termination. Strictly speaking,
the weakest precondition of property ) through statement stmt should also ensure termination
and execution without runtime error.

The proof obligations generated by WP do not entail systematic termination, unless you sys-
tematically specify and validate loop variant ACSL annotations. Nevertheless, exit behaviors
of a function are correctly handled by WP.

Regarding runtime errors, the proof obligations generated by WP assume your program never
raises any of them. Moreover, the only integer model currently implemented assumes no
integer overflow at all (signed or unsigned). As illustrated in the short tutorial example of
section 1.2, you should enforce the absence of runtime error on your own, for instance by
running the value analysis plug-in or the rte generation one.
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Provers. The WP plug-in computes proof obligations for post-conditions and assertions in
C functions, and submits them to external provers.

You may discharge the generated proof obligation with automated decision procedures or an
interactive proof assistant. Technically, WP is interfaced with Alt-Ergo [CCK06], Coq [Coq10],
and any decision procedure supported by Why [Fil03].

1.4 Memory Models

The essence of a weakest precondition calculus is to translate code annotation into mathemati-
cal properties. Consider the simple case of an annotation referring to a non-pointer C-variable
X:

X = xX+1;
| //@ assert P: x >= 0 ;

We can translate P into the mathematical property P(X) = X > 0, where X stands for
the value of variable x at the appropriate program point. In this simple case, the effect of
statement x=x+1 over P is actually the substitution X — X + 1, that is X +1 > 0.

The problem when applying weakest precondition calculus to C programs is to deal with
pointers. Consider now:

p =
| X = x+1;
//@ assert Q: xp >= 0 ;

It is clear that, taking into account the aliasing between *p and x, the effect of the increment
of x can not be translated by a simple substitution of X in Q.

This is where memory models comes to rescue.

A memory model defines a mapping from values inside the C memory heap to mathematical
terms. The WP has been designed to support different memory models. There are currently
three memory models implemented, and we plan to implement new ones in future releases.
Those three models are all different from the one in the Jessie plug-in, which makes WP
complementary to Jessie.

Hoare model. A very efficient model that generates concise proof obligations. It simply maps
each C variable to one pure logical variable.

However, the heap can not be represented in this model, and expressions such as *p can
not be translated at all. You can still represent pointer values, but you can not read or
write the heap through pointers.

Store model. The default model for WP plug-in. Heap values are stored in a global array.
Pointer values are translated into an index into this array.

In order to generate reasonable proof obligations, the values stored in the global array are
not the machine-ones, but the logical ones. Hence, all C integer types are represented by
mathematical integers and each pointer type to a given type is represented by a specific
logical abstract datatype.

A consequence is that heterogeneous cast of pointers can not be translated in this model.
For instance within this memory model, you can not cast a pointer to int into a pointer
to char, and then access the internal representation of an int value in memory.

11
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Runtime model. This is a low-level memory model, where the heap is represented as a wide
array of bits. Pointer values are exactly translated into memory addresses. Read and
write operations from/to the heap are translated into manipulation of range of bits in
the heap.

This model is very precise in the sense that all the details of the program are represented.
This comes at the cost of huge proof obligations that are very difficult to discharge by
automated provers, and generally require an interactive proof assistant.

Thus, each memory model offers a different trade-off between expressive power and ease of
discharging proof obligations. The Hoare memory model is very restricted but generates easy
proof obligations, Runtime is very expressive but generates difficult proof obligations, and
Store offers an intermediate solution.

12



Chapter 2

Using WP Plug-in

The WP plug-in can be used from the Frama-C command line or within its graphical user
interface. It is a dynamically loaded plug-in, distributed with the kernel since the Carbon
release of Frama-C.

This plug-in computes proof obligations of programs annotated with ACSL annotations by
weakest precondition calculus, using a parametrized memory model to represent pointers and
heap values. The proof obligations may then be discharged by external decision procedures,
which range over automated theorem provers such as Alt-Ergo [CCK06] or interactive proof
assistant like Coq [Coq10].

This chapter describes how to use the plug-in, from the Frama-C graphical user interface
(section 2.1), from the command line (section 2.2), or from another plug-in (section 2.3).
Additionally, the combination of the WP plug-in with the load and save commands of Frama-
C and/or the -then command-line option is explained in section 2.4.

2.1 Graphical User Interface

To use WP plug-in under the GUI, you simply need to run the Frama-C graphical user interface.
No additional option is required, although you can preselect some of the WP options described
in section 2.2:

| $ frama-c-gui [options...] *.c

As we can see in figure 2.1, the memory model, the decision procedure, and some WP options
can be tuned from the WP side panel. Others options of the WP plug-in are still modifiable
from the Properties button in the main GUI toolbar.

To prove a property, just select it in the internal source view and choose WP from the contex-
tual menu. The Console window outputs some information about the computation. Figure 2.2
displays an example of such a session.

If everything succeeds, a green bullet should appear on the left of the property. The computa-
tion can also be run for a bundle of properties if the contextual menu is open from a function
or behavior selection.

The options from the WP side panel correspond to some options of the plug-in command-
line. Please refer to section 2.2 for more details. In the graphical user interface, there are
also specific panels that display more details related to WP plug-in, that we shortly describe
below.

13
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Figure 2.2: WP run from the GUI
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Source Panel. On the center of the Frama-C window, the status of each code annotation is
reported in the left-margin. The meaning of icons is the same for all plug-ins in Frama-C and
more precisely described in the general user’s manual of the platform. The status emitted by
the WP plug-in are:

Icons for properties:

No proof attempted.

The property has not been validated.

The property is valid but has dependencies.
The property and all its dependencies are valid.

@00

Proof Obligations Panel. This panel is dedicated to the WP plug-in. It shows the gen-
erated proof obligations and their status for each prover. By double-clicking an annotation,
you can view its mathematical definition in a human readable format. By clicking on a prover
column, you can also submit a proof obligation to a prover by hand.

Properties Panel. This panel summarizes the consolidated status of properties, from vari-
ous plug-ins. This panel is not automatically refreshed. You should press the Refresh button
to update it. This panel is described in more details in the general Frama-C platform user’s
manual.

Property Dependency Graph. By double-clicking on the status column of a property
in the properties panel, you can display a dependency graph for this property. The graph
displays the property, its status, which plug-in has participated in the proof, and on which
properties the proof directly depends on.

2.2 Command Line Options

The best way to know which options are available is to use:

| # frama-c -wp-help

The WP plug-in generally operates in three steps:

1. Annotations are selected to produce a control-flow graph of elementary statements an-
notated with hypothesis and goals.

2. Weakest preconditions are computed for all selected goals in the control-flow graph.
Proof obligations are emitted and saved on disk.

3. Decision procedures (provers) are run to discharge proof obligations.

The WP options allow to refine each step of this process. It is very convenient to use them
together with the standard -then option of Frama-C, in order to operate successive pass on
the project. See section 2.4 for details.

15
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2.2.1 Goal Selection

This group of options refines the selection of annotations for which proof obligations are
generated. By default, all annotations are selected. By default, a property which is already
proved — by WP plug-in or any other — does not lead to any proof-obligation generation.

-wp generates proof obligations for all (selected) properties.
-wp-fct <fy,...,f,> selects annotations of functions fy,...,f, (defaults to all functions).

-wp-bhv <by,...,b,> selects annotation for behaviors by,...b, (defaults to all behaviors) of
the selected functions.

-Wwp-prop <pi,...,pn> selects properties having p; or ...p, as tagname (defaults to all prop-
erties). You may also replace a tagname by a @<category> of properties.
Recognized categories are: @requires, @assigns, @ensures, Qexits, @assert, @invariant,
Ovariant, @breaks, @continues, O@returns, @complete_behaviors, @disjoint_behaviors.
Starts by a minus character to remove properties or tags from the selection.
For example -wp-prop="-0@assigns" removes all assigns and loop assigns properties
from the selection.

-wp-(no) -status-all includes in the goal selection all properties regardless of their current
status (default is: no).

-wp-(no) -status-valid includes in the goal selection those properties for which the current
status is already ’valid’ (default is: no).

-wp-(no) -status-invalid includes in the goal selection those properties for which the cur-
rent status is already ’invalid’ (default is: no).

-wp- (no) -status-maybe includes in the goal selection those properties with an undetermined
status (default is: yes).

Remark: options -wp-status-xxx are not taken into account when selecting a property by
its name or from the GUI.

2.2.2 Program Entry Point

The generic Frama-C options dealing with program entry point are taken into account by WP
plug-in as follows:

-main <f> designates f to be the main entry point (defaults to main).

-lib-entry the main entry point (as defined by option -main) is analyzed regardless of its
initial context (default is no).

These options impact the generation of proof-obligations for the “requires” contract of the
main entry point. More precisely, if there is a main entry point, and -lib-entry is not set:

e the global variables are set to their initial values at the beginning of the main entry
point for all its properties to be established ;

16
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e special proof obligations are generated for the preconditions of the main entry point,
hence to be proved with globals properly initialized.

Otherwise, initial values for globals are not taken into account and no proof obligation is
generated for preconditions of the main entry point.

2.2.3 Model Selection

These options modify the underlying memory model that is used for computing weakest
preconditions. See chapter 3 for details.

-wp-model <m> sets the memory model among Hoare, Store (default memory model) or
Runtime. For more information about the models and how to choose it, see section 1.4.

-wp-(no) -logicvar activates optimization for variables whose address is never taken, for
which WP calculus uses the Hoare model (default is: yes).

-wp-(no) -byreference activates detection of arguments passed by reference (as pointers),
for which WP calculus may also use the Hoare model under some hypotheses (default
is: no).

-wp-assigns <m> sets the method for proving assigns clauses. Possible methods are:

effect: Each statement with side-effect produces one sub-goal. The locations written
by each statement are checked to be included in the assigns clause. This gives a
result stronger than required, but the proof obligations are generally simple and
sufficient in practice. So, this is the default method.

memory: use the ACSL definition of assigns clauses, where memory states are com-
pared before and after the considered block. Generates much more complex proof
obligations than effect.

none: skip proof of assigns clauses.

-wp-external-arrays gives a arbitrary large size to arrays with no dimensions. This is a
modelization of infinite size arrays (default is: no).

2.2.4 Computation Strategy

These options modifies the way proof obligations are generated during weakest precondition
calculus.

-wp-(no) -invariants computes proof obligations for arbitrary invariants inside loops. Also
modifies the calculus for proper loop invariants. This option automatically turns split-
ting on (see -wp-split)! (default is: no).

-wp-huge <s> cuts off proof terms with size exceeding 2° (default size: 230). The size of a
term is linearly related to its size on the disk, and to the size of proof obligation sent to
decision procedures.

1To be efficient, it is better to put all the loop invariants inside only one annotation. Otherwise, Frama-C
insert them at different program points. Then, the WP calculus cuts the generated proof obligations at each
invariant instead of proving all of them inside the same induction scheeme.
Notice that, when using the ACSL-Importer plug-in, all the loop invariants are placed at one unique program
point, and are treated efficiently by WP plug-in.

17
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-wp-norm <m> sets the normalization method applied to let-bindings in obligations generated
for Alt-Ergo and Coq:

Egs: let-bindings are replaced by universally-quantified fresh variables with the associ-
ated defining equalities in hypothesis (default method).

Let: let-bindings are preserved.
Exp: let-bindings are expanded.

Cc: let-bindings are replaced by function call or predicates by closure conversion.

-wp- (no) -rte generates RTE guards before computing weakest preconditions. This op-
tion calls the rte generation plug-in with the following options: -rte-mem, -rte-div,
-rte-signed and -rte-unsigned-ov. The generated guards, when proved?, fulfill the
requirements for using the WP plug-in (default is: no).

-wp-(no)-simpl simplifies constant expressions and tautologies (default is: yes).

-wp- (no) -split conjunctions in generated proof obligations are recursively split into sub-
goals. The generated goal names are suffixed by “partn”’. Notice that this option is set
by default for assigns clauses when using the effect assigns method (see -wp-assigns
above). Otherwise the option defaults to no.

-wp-split-dim <d> limits the number of generated sub-goals for assigns goals when using
-wp-split. The number of generated sub-goals will not exceed 2¢ proof obligations.
Default is 28.

2.2.5 Decision Procedures Interface

The generated proof obligations are submitted to external decision procedures. If proof obli-
gations have just been generated, by using -wp, -wp-fct, -wp-bhv or -wp-prop, then only the
new proof obligations are sent. Otherwise, all unproved proof obligations are sent to external
decision procedures.

-wp-check <dp> only checks the syntax of generated proof obligations for a family of decision
procedures. Possible values of dp are: alt-ergo, coq and why.

-wp-par <n> limits the number of parallel process runs for decision procedures. Defaults is
4 processes. With -wp-par 1, the order of logged results is fixed. With more processes,
the order is runtime dependent.

-wp-proof <dp,...> selects the decision procedures used to discharge proof obligations. See
below for supported provers. By default, alt-ergo is selected, but you may specify
another decision procedure or a list of to try with. Finally, you should supply none for
this option to skip the proof step.

It is possible to ask for several decision procedures to be tried. For each goal, the first

decision procedure that succeed cancels the other attempts.

-wp-(no) -proof-trace asks for provers to output extra information on proved goals when
available (default is: no).

2It is still correct to prove these RTE annotations with WP plug-in.
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-wp-timeout <n> sets the timeout (in seconds) for the calls to the decision prover (defaults
to 10 seconds).

-wp-(no) -trace keeps user labels in generated proof obligations. This option can be useful
for tracing where the proof obligations come from, especially when using -wp-split
option or interactive proof assistants (default is: no).

Alt-Ergo Direct support for the Alt-Ergo prover is provided. You need at least version 0.94
of the prover. It is also the default selected prover.

-wp-proof alt-ergo selects Alt-Ergo.

-wp-depth <n> sets ’stop’ and ’age-limite’ parameters of Alt-Ergo such that n cycles of
quantifier-instanciations are enabled.

When using the new experimenal Typed model (see chapter 4), the following options are
available with Alt-Ergo:

-wp-steps <n> sets the maximal number of Alt-Ergo steps. This can be used as a machine-
independant alternative to timeout.

-wp-proof-trace prints Alt-Ergo proof trace.

-wp-unsat-model prints Alt-Ergo models for undischarged proof obligations.

Coq. Direct support for the Coq proof assistant is provided. The generated proof obligations
are accepted by Coq version 8.3 but should also work with prior versions of the proof assistant.
When working with Coq, you will enter interactive session, then save the proof scripts in order
to replay them in batch mode.

-wp-script <f.script> specifies the file which proof scripts are retrieved from, or saved to.
The format of this file is private to the WP plug-in. It is, however, a regular text file
from which you can cut and paste part of previously written script proofs. The WP
plug-in manages the content of this file for you.

-wp- (no) -update-script if turned off, the user’s script file will nnot be modified. A warning
is emitted if script data base changed.

-wp-tactic <ltac> specifies the Coq tactic to try with when no user-script is found. The
default tactical is "auto with zarith". See also how to load external libraries and
user-defined tactics in section 2.2.7.

-wp-tryhints When both the user-provided script and the default tactic solve the goal, other
scripts for similar goals can be tried instead.

-wp-hints <n> Set the maximal number of suggested proof scripts.

-wp-proof coq only runs coqc on proof scripts found in the script file. If the generated
goal (or the default one) is not correctly typed-checked by coqc, the coq prover fails to
discharge the proof obligation.
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-wp-proof coqide first tries to replay some known proof script (if any). If it does not succeed,
then a new interactive session for cogide is opened. During this session, several files
are opened for you:

<goal>.v the proof obligation to discharge.

<model>_env<n>.v the environment generated during weakest precondition calculus
(already compiled by coqc): type definitions, global variables, etc.

<model>_model.v the definitions and properties of the memory model used (already
compiled by coqc).

f.script the script file where all your proofs are stored. This is useful for reusing parts
from previous scripts on similar goals.

As soon as coqide exits, the edited proof script is saved back to the script file, and
finally checked by cogc. Do not forget to save your proof before exiting coqide.

Why. Finally, a wide range of automated provers are supported by WP plug-in thanks to the
Why 2.29 prover interface. Both the why translation tool and the why-dp utility are required.
You also need to install external provers by your own. The accepted values corresponding to
these provers for the -wp-proof option are: simplify, yices, cvc3, vampire, z3, zenon.

2.2.6 Trigger Generation

The ACSL language does not provide user with syntax for declaring triggers associated to
lemmas and axioms. However, triggers are generally necessary for SMT solvers to discharge
efficiently the generated proof obligations.

There is a limited support for triggers in WP. The sub-terms and sub-predicates marked with
label "TRIGGER" in an axiom or lemma are collected to generate a multi-trigger for their
associated free variables.

2.2.7 Additional Proof Libraries

It is possible to add additional bases of knowledge to decision procedures. This support is
provided for Alt-Ergo, Why and Coq thanks to the following options:

-wp-include <dir,...> sets the directories where external libraries are looked for. The
current directory (implicitly added to that list) is always looked up first.

-wp-coq-1ib <file,...> looks for Coq files (".v", the extension can be omitted) in in-
cluded directories, and copies them into WP working directory (see option -wp-out).
The files are then compiled in the same environment than for proof obligations, and
imported for proving each goal. In particular, it is possible to use external libraries
within -wp-cog-tactic command.

-wp-why-1ib <file,...> looks for Why library files (".why", the extension can be omitted)
in included directories, and copies them into the proof obligation files for Why based
SMT solvers.

-wp-alt-ergo-1ib <file,...> looks for Why library files (".why", the extension can be
omitted) in included directories, and copies them into the proof obligation files for Alt-
Ergo.
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2.2.8 Generated Proof Obligations

Your proof obligations are generated and saved to several text files. With the -wp-out option,
you can specify a directory of your own where all these files are generated. By default, this
output directory is determined as follows: under the GUI, it is <home>/.frama-c-wp where
<home> is the user’s home directory returned by the HOME environment variable. In command-
line, a temporary directory is automatically created and removed at Frama-C exit.

The other options controlling the output of generated proof obligations are:

-wp-(no) -print pretty-prints the generated proof obligations on the standard output. Re-
sults obtained by provers are reported as well (default is: no).

-wp-(no) -warnings displays details when warnings are emitted during proof obligation gen-
eration (default is: no).

-wp-out <dir> sets the user directory where proof obligations are saved. The directory is
created if it does not exist yet. Its content is not cleaned up automatically.

-wp-(no) -dot generates a graphical representation of the CFG in the dot format used by the
GraphViz tools® (default is: no).

The output directory contains a lot of files. All files are generated with the following naming
convention:

<goal>_head.txt asummary of the generated proof obligation. This file contains the warning
emitted during weakest precondition calculus.

<goal>_body.txt a human-readable description of the proof obligation.

<goal>_log_<prover>.txt a log from the prover when it has been run on the goal.
The complete goal submitted to external provers:

<goal>_po.why for WHY.

<goal>_po_why.<ext> generated by WHY for external decision procedures.
<goal>_po_ergo.why for Alt-Ergo without arrays.

<goal>_po_aergo.why for Alt-Ergo with arrays.

<goal>_po.v for Coq.

Each complete goal actually consists of the specification of the model, an environment de-
scribing the C definitions of your program, and the elementary goal itself. The environments
are:

<env>.txt in human-readable description of the environment.
<env>.why for Why.

<env>_ergo.why for Alt-Ergo without arrays.

Shttp://www.graphviz.org
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<env>_aergo.why for Alt-Ergo with arrays.

<env>.v for Coq.
The elementary goals are:

<goal>.why the elementary goal generated for WHY.
<goal>_ergo.why the elementary goal generated for Alt-Ergo without arrays.
<goal>_aergo.why the elementary goal generated for Alt-Ergo with arrays.

<goal>.v the elementary goal generated for Coq.

Finally, definitions and properties of the memory model are distributed in the Frama-C
share/wp directory with similar naming conventions. Their Coq instances are copied on
the temporary directory for separate compilation purposes.

To discharge a proof obligation, WP plug-in assembles an input for the external decision prover
composed of three inputs: the resources for selected memory model, the resources from the
environment of the goal, and the goal itself.

Remark: to save space on disk, when generating proof obligations from the command line,
the proof obligations are only generated for the requested prover format. This behavior is
turned off under the GUI and in debug mode. Hence, you still get all formats available for
all provers in these cases.

2.3 Plug-in Developer Interface

The WP plug-in has several entry points registered in the Dynamic? module of Frama-C.

Wp.run runs the weakest precondition calculus using the options to know what to compute.
This is similar to using -wp on the command line;

Wp.wp_clear erases all internal data of plug-in WP. Properties proved by WP are not erased,
but all generated proof obligations are lost. This is a safe workaround for working with
WP on multiple projects.

Wp.wp_compute kf_opt bhv_list_opt prop_opt where:

e kf_opt is an optional kernel function;
e bhv_list_opt specifies an optional behavior list;

e prop_opt specifies an optional property;

4See the plug-in development guide
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2.3.1 Proof Obligation Reports

The WP plug-in can export statistics on generated proof obligations. These statistics are
called WP reports and are distinct from those property reports generated by the Report plug-
in. Actually, WP reports are statistics on proof obligations generated by WP, whereas property
reports are consolidated status of properties, generated by Frama-C kernel from various ana-
lyzers. We only discuss WP reports in this section.

Reports are generated with the following command-line options:

-wp-report <Rspecy,...,Rspecy,> specifies the list of reports to export. Each value Rspec;
is a WP report specification file (described below).

-wp-report-basename <name> set the basename for exported reports (described below).

Reports are created from user defined wp-report specification files. The general format of a
wp-report file is as follows:

<config...>

QHEAD

<head contents...>
QFUNCTION

<per function contents...>
QTAIL

<tail contents...>

QEND

Configuration section consists of optional commands, one per line, among;:

@CONSOLE the report is printed on standard output.
Also prints all numbers right-aligned on 4 ASCII characters.

Q@FILE "<file>" the report is generated in file file.

@SUFFIX "<ezxt>" the report is generated in file base.ext,
where base can be set with -wp-report-basename option.

@ZERO "<tezt>" text to be printed for O-numbers. Default is "-".
Q@FUNPREFIX "<tezt>" text to be printed before function names. Default is empty.

Q@LEMPREFIX "<tezt>" text to be printed before names of lemmas. Default is " (Lem.)" (with
a trailing space).

The generated report consists of three optional parts, corresponding to Head, Function and
Tail sections of the wp-report specification file. First, the head contents lines are produced.
Then, for each function analyzed by WP, the content lines of Function section are printed.
Finally, the Tail content lines are printed.

Textual contents use special formatters that will be replaced by actual statistics values when
the report is generated. There are several categories of formatters (PO stands for Proof
Obligations):
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Formatters Description
&<col>: insert spaces up to column col
&& prints a "&"
%h prints a "%"
%h<stat> statistics for section
%prop percentage of finally proved properties in section
%prop:total number of covered properties
%prop:valid number of finally proved properties
%prop:failed number of remaining unproved properties
%<prover> discharged PO by prover
%<prover>:<stat> statistics for prover in section
%function current function name
Provers
(<prover>) A prover name (see -wp-proof)
Statistics
(<prover>)
total number of generated PO
valid number of discharged PO
failed number of non-discharged PO
time maximal time used by prover for one PO
steps maximal steps used by prover for one PO
success percentage of discharged PO

Remarks: &ergo is a shortcut for &alt-ergo. Formatters can be written "%.." or "%{..}".

2.4 Plug-in Persistent Data

As a general observation, hardly none of the internal WP data is kept in memory after each
execution. Most of the generated proof-obligation data is stored on disk before being sent to
provers, and they are stored in a temporary directory that is removed upon Frama-C exit (see
also -wp-out option).

The only information which is added to the Frama-C kernel consists in a new status for those
properties proved by WP plug-in with their dependencies.

Thus, when combining WP options with -then, -save and -load options, the user should be
aware of the following precisions:

-wp, -wp-prop, -wp-fct, -wp-bhv. These options make the WP plug-in generate proof-
obligations for the selected properties. The values of theses options are never saved and
they are cleared by -then. Hence, running -wp-prop A -then -wp-fct F does what
you expect: properties tagged by A are proved only once.

-wp-print, -wp-proof, -wp-check. These options do not generate new proof-obligations,
but run other actions on all previously generated ones. For the same reasons, they are
not saved and cleared by -then.

-wp-xxx. All other options are tunings that can be easily turned on and off or set to the
desired value. They are saved and kept across -then command.
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Chapter 3

WP Models

Basically, a memory model is a set of datatypes, operations and properties that are used to
abstract the values living inside the heap during the program execution.

Each memory model defines its own representation of pointers, memory and data actually
stored in the memory. The memory models also define some types, functions and properties
required to translate C programs and ACSL annotations into first order logic formulee.

The interest of developing several memory models is to manage the trade-off between the
precision of the heap’s values representation and the difficulty of discharging the generated
proof obligations by external decision procedures. If you chose a very accurate and detailed
memory model, you shall be able to generate proof obligations for any program and annota-
tions, but most of them would be hardly discharged by state-of-the art external provers. On
the other hand, for most C programs, simplified models are applicable and will generate less
complex proof obligations that are easier to discharge.

A practical methodology is to use the simpler models whenever it is possible, and to up the
ante with more involved models on the remaining more complex parts of the code.

This chapter is dedicated to the description of the memory models implemented by the WP
plug-in. In this preliminary version of the manual, we only provide a high-level description
of the memory models you might select with option -wp-model (section 3.2 and 3.3). Then
we focus on two general powerful optimizations. The first one, activated by default and
controlled by option -wp-(no)-logicvar (section 3.4), mixes the selected memory model
with the purely logical Hoare model for those parts of your program that never manipulate
pointers. The second one, controled by option -wp-byreference (section 3.5), is dedicated
to those pointers that are formal parameters of function passed by reference.

3.1 Language of Proof Obligations

The work of WP consists in translating C and ACSL constructs into first order logical formulee.
We denote by L the logic language for constructing proof obligations. Shortly, this logical
language is made of terms (¢ : term) and propositions (P : prop) made of:

e Natural, signed, unbounded integer constants and their operations;
e Natural real numbers and their operations;

e Arrays (as total maps) and tuples;
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Abstract (polymorphic) data types;

e Anonymous function symbols;

Logical connectors;

e Universally and existentially quantified variables.

Actually, the task of the memory model consists in mapping any heap C-values at a given
program point to some variable or term in the logical £ language.

3.2 The Hoare Memory Model

This is the simplest model, inspired by the historical definition of Weakest Precondition Cal-
culus for programs with no pointers. In such programs, each global and local variable is
assigned a distinct variable in L.

Consider for instance the statement x++; where x has been declared as an int. In the Hoare
memory model, this C-variable will be assigned to two L-variables, say x1 before the statement,
and x4y after the statement, with the obvious relation zo = 1 + 1 (if no overflow occurred).

Of course, this model is not capable of handling memory reads or writes through pointer
values, because there is no way of representing aliasing.

You select this memory model in the WP plug-in with the option -wp-model Hoare; the
analyzer will complain whenever you attempt to access memory through pointers with this
model.

3.3 Memory Models with Pointers

Realistic memory models must deal with reads and writes to memory through pointers. How-
ever, there are many ways for modeling the raw bit stream the heap consists of. All memory
models M actually implement a common signature:

Pointer Type: 7, generally a pair of a base address and an offset.

Heap Variables: for each program point, there is a set of logical variables to model the
heap. For instance, you may have a variable for the values at a given address, and
another one for the allocation table. The heap variables m; ...my are denoted by 7.

Read Operation: given the heap variables 77, a pointer value p : 7, and some C-type 7', the
model will define an operation:

readr (T, p) : term

that defines the representation in £ of the value of C-type T which is stored at address
p in the heap.

Write Operation: given the heap variables 7 before a statement, and their associated heap
variables T’ after the statement, a pointer value p : 7 and a value v of C-type T, the
model will define a relation:

writer (M, p, v, M) : prop

that relates the heap before and after writing value v at address p in the heap.
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Typically, consider the statement (*p)++ where p is a C-variable of type (int*). The memory
model M will assign a unique pointer value P : 7 to the address of p in memory.

Then, it retrieves the actual value of the pointer p, say A,, by reading a value of type intx*

into the memory variables m at address P:

Ay = readine« (7, P)

Next, the model retrieves the previous int-value at actual address A, say Vj:

Vp = readint (M, Ap)

Finally, the model relates the final memory state 7’ with the incremented value V,, + 1 at
address P:

writeint (M, Ap, V, + 1,0)
There are two such models with pointers available with the WP plug-in:

-wp-model Store : asimple memory model with two heap-variables. One is for the allocation
table that deals with pointer validity. The second one stores numerical and pointer
values into an array indexed by pointers. This model is not capable of handling unions
and casts of pointer types.

-wp-model Runtime : a low-level memory model, also with two heap-variables. One is for
the allocation table, and second one stores all values of the heap as an array of bytes
indexed by pointers. All operations can be handled by this model, but the generated
proof obligations are generally untractable by automated decision procedures.

3.4 Hoare Variables mixed with Pointers

As illustrated above, a very simple statement is generally translated by memory models into
complex formulee. However, it is possible in some situations to mix the Hoare memory model
with the other ones.

For instance, assume the address of variable x is never taken in the program. Hence, it is not
possible to create a pointer aliased with &x. It is thus legal to manage the value of x with
the Hoare memory model, and other values with another memory-model M that deals with
pointers.

Common occurrences of such a situation are pointer variables. For instance, assume p is a
variable of type int*; it is often the case that the value of p is used (as in *p), but not the
address of the variable p itself, namely &p. Then, it is very efficient to manage the value of p
with the Hoare memory model, and the value of *p with a memory model with pointers.

Such an optimization is possible whenever the address of a variable is never taken in the
program. It is activated by default in the WP plug-in, since it is very effective in practice.
You can nevertheless deactivate it with option -wp-no-logicvar.
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3.5 Hoare Variables for Reference Parameters

A common programming pattern in C programs is to use pointers for function arguments
passed by reference. For instance, consider the swap function below:

| void swap(int *a,int *b)
[ €

| int tmp = *a ;

| *a = xb ;

| *b = tmp ;

[ ¥

Since neither the address of a nor the one of b are taken, their values can be managed by the
Hoare Model as described in previous section. But we can do even better. Remark that none
of the pointer values contained in variables a and b is stored in memory. The only occurrences
of these pointer values are in expressions *a and *b. Thus, there can be no alias with these
pointer values elsewhere in memory, provided they are not aliased initially.

Hence, not only can a and b be managed by the Hoare model, but we can also treat (xa) and
(x¥b) expressions as two independent variables of type int with the Hoare memory model.

For the callers of the swap function, we can also take benefit from such by-reference passing
arguments. Typically, consider the following caller program:

| void f(void)

[ €

| int x=1,y=2 ;
| swap (&x,&y) ;
[ ¥

Strictly speaking, this program takes the addresses of x and y. Thus, it would be natural to
handle those variables by a model with pointers. However, swap will actually always use *&x
and *&y, which are respectively x and y.

In such a situation it is then correct to handle those variables with the Hoare model, and this
is a very effective optimization in practice. Notice however, that in the example above, the
optimization is only correct because x and y have disjoint addresses.

These optimizations can be activated in the WP plug-in with the -wp-byreference op-
tion, and the necessary separation conditions are generated on-the-fly. To summarize, the
-wp-byreference option:

e detects pointer or array variables that are always passed by reference.
e generates additional pre-conditions to prevent aliasing between arguments at call sites.

e assigns the detected variables passed by reference to the Hoare memory model.

This optimization is not activated by default, since the non-aliasing hypotheses at call sites
are sometimes irrelevant.
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Chapter4

WP Simplifier

(Experimental).

The logical language £ used to build proof obligations is now equipped with build-in sim-
plifications. This allows for proof obligations to be simplified before being sent to external
provers, and sometimes to be reduced to trivial goals.

This chapter is dedicated to the description of simplifier and how to use it with WP plug-in.
The simplification technology involved a complete refactoring of WP internals, such that it can
not be used with the usually available memory models. Instead, the simplifier is activated
by using a novel implementation of Store model, called the Typed model. Logic variables
and reference parameters have been already ported on this new memory model, and Runtime
memory model will be available in a near future. These novel implementations of memory
models make better usage of build-in theories of provers, especially the array and record
theories of the recent Alt-Ergo 0.94 prover.

Not only the memory models, but also the weakest precondition calculus have been enhanced
to take advantages from the new logic language and its simplifications. Hence, combinatorial
explosion of path exploration is now tackled down thanks to passive form transformation
and automated sub-terms factorization ['S01, Lei03]. This also leads to more compact and
(somehow) more readable proof obligations, with less memory, less disk usage and lower
external prover time overhead.

4.1 Specific Options

The WP behavior is slightly different when using these new features. This section summarize
those differences and few specific options.

-wp-model Typed activates the new memory model with the new logical language and its
basic simplifications.

-wp-qed activates advanced simplifications in £. Goals are pre-simplified before being sub-
mitted to the provers. If the residual of simplification is a trivial goal (¢rue goal or false
hypothesis), the proof is discharged without any external prover.

-wp-byreference activates the detection of reference parameters as discussed in section 3.5.

-wp-split deactivates the factorization of proof contexts on conditional statements. This
provides opportunities for more aggressive simplifications on each conditional branches,
but at the price of a potential combinatorial explosion of generated proof obligations.

29




CHAPTER 4. WP SIMPLIFIER

Support of Alt-Ergo prover is also enhanced in several ways. Time and proof steps are now re-
ported, and it is possible to limit the number of proof steps with a new option -wp-steps. The
graphical user interface of Alt-Ergo can also be launched, by selecting -wp-proof altgr-ergo.
The command line prover alt-ergo is tried first, then the GUI (if installed).

In the graphical user interface of WP plug-in, running by hand alt-ergo on a proof obligations
also launches altgr-ergo when available.

4.2 Logic Normalization

The new logic language L is naturally equipped with term normalization and maximal sub-
term sharing. It is only used with new memory models, not with the standard ones.

The maximal sub-term sharing are responsible for the introduction of let-bindings whenever a
sub-expression appears several times in the generated proof obligations. The occupied memory
and disk usage of WP is also reduced compared to other models.

The normalization rules can not be turned off, and are responsible for local simplifications.
Although modest, they can turn a proof obligation to be trivialy discharged.

Logic normalization by commutativity and associativity ; absorption and neutral elements ;
elimination of redundant facts ; propagation of negations (Morgan laws) ; simplification
of conditionals.

Arithmetic normalization by commutativity and associativity ; absorption and neutral el-
ements ; factorization with linear forms ; constant folding ; normalization of linear
equalities and inequalities.

Array elimination of consecutive access and updates.

Record elimination of consecutive access and updates ;
simplification of structural equalities and inequalities.

4.3 Simplifier Engine (Qed)

Build on top of our normalizing logic language £, we have a simplifier engine named Qed. The
simplifier engine is used by WP plug-in to simplify the generated proof contexts and proof
obligations. The basic feature of Qed is to manage a base of knowledge I'. It is possible to
add new facts (hypotheses) to I', and to simplify (rewrite) a term of a property with respect
to I

By default, the only rewriting performed by Qed is the propagation of equality classes by
normalization. The Qed engine can be enriched by means of plug-ins to perform more dedi-
cated simplifications. For instance, we have developed a simplifier plug-in for array and record
theories, and a prototype for linear inequalities.

WP uses the simplification engine to simplify proof contexts by recursively combining for
basic laws involving the simplifier engine. Each law is applied with respect to a local base of
knowledge I" (initially empty).

Adding a new fact H to I' is denoted by I' ® H ; rewriting a term of predicate e into €’ with
respect to I' is denoted by I' = e €.
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Inference Law. An hypothesis is simplified and added to the knowledge base to simplify
the goal.
'e H> H reH EG>G
' (H—-G)r (H - &)

Conjunction Law. Each side of a conjunction is simplified with the added knowledge of
the other side. This law scales up to the conjunction of n facts, and simplifications can be
performed incrementally.

reBE Av A re¢AE B> B
I'= (AAB)b> (ANDB')

Conditional Law. The conditional expression is simplified, before simplifying each branch
under the appropriate hypothesis.

e Hbo H ToH = A A Io-H E Bo B
' (H?A:B)v> (H'?A": B)

Inside the WP plug-in, the proof contexts are only build in terms of conjunctions, conditional
and inference rules. Hence, these laws are sufficient to perform proof context simplifications.
Technically, simplification has a quadratic complexity in the width and depth of the proof
formula. Options will be added to control the risk for combinatorial explosion. In practice,
simplification is delayed until submission of the proof obligation to external provers, that
have similar complexity. Since we account on simplification for enhancing prover efficiency,
we expect this extra cost to be valuable.

The power of the simplification process depends on the simplification plug-ins loaded in the
Qed engine, and will be the purpose of further developments.

4.4 Efficient WP Computation

During the Weakest Precondition calculus, proof obligations are constructed backwardly for
each program instruction. Conditional statements are of particular interest, since they intro-
duce a fork in the generated proof contexts.

More precisely, consider a conditional statement if (e) A else B. Let Wy be the weakest
precondition calculus from block A, and Wp the one from block B. Provided the transla-
tion of expression e in the current memory model leads to assumption F, the naive weakest
precondition of the conditional is: (E7W4 : Wg).

With this formula, the weakest preconditions of the program after the conditional is duplicated
inside W, and Wpg. Moreover, this common post conditions have been transformed by the
effects of A and B. Then, the factorization of common sub-terms of logic language £ is not
capable of avoiding the duplication. In presence of successive conditionals, proof obligations
generated become twice as big at each conditional statement.

To tackle this problem, the solution is to put the program in passive form [FS01, Lei03]. Each
variable of the program is assigned a different logic variable in each branch. The different
variables are joined at conditionals into new fresh variables and equality conditions.

In practice, the passive form transformation is done during the weakest precondition calculus,
together with the translation of C and ACSL by the memory model. Hence, a translation map
o is maintained at each program point from memory model variables to £ logic variables.
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Joining to maps o1 and o9 from the branches of a conditional leads to a new map o assigning
a new logic variable x to memory variable m whenever o1(m) and o2(m) are different. This
join also produces the two sets of equalities Hy and Hs associated to this variables renaming.
Hence o(m) = o1(m) below is member of H; and o(m) = o2(m) is member of Hs.

Now, if W is the post-condition of the conditional program below, W4 and Wp can always
be decomposed into: W4 = Wg AW and Wp = Wg A W. Finally, the weakest precondition
of the conditional is:

(E?H AWS : HoAWR)AW

This form actually factorizes the common postcondition to A and B, which makes the weakest
precondition calculus linear into the number of program statements.

4.5 The Typed Memory Model

This memory model is actually a reformulation of the Store memory model used in previous
versions of the WP plug-in. In theory, its power of expression is equivalent. However, in
practice, the reformulation we performed makes better usage of built-in theories of Alt-Ergo
theorem prover and Coq features. The main modifications concern the heap encoding and the
representation of addresses.

Addresses. We now use native records of £ and provers to encode addresses as pairs of
base and offset (integers). This simplify greatly reasoning about pointer separation and com-
mutation of memory accesses and updates.

Store Memory. In the Store memory model, the heap is represented by one single memory
variable holding an array of data indexed by addresses. Then, integers, floats and pointers
must be boxed into data and unboxed from data to implement read and write operations.
These boxing-unboxing operations typically prevent Alt-Ergo from making maximal usage of
its native array theory.

Typed Memory. Inthe Typed memory model, the heap is now represented by three memory
variables, holding respectively arrays of integers, floats and addresses indexed by addresses.
This way, all boxing and unboxing operations are avoided. Moreover, the native array theory
of Alt-Ergo works very well with its record native theory used for addresses : memory variables
access-update commutation can now rely on record theory to decide that two addresses are
different (separated).

4.6 Conclusion

This experimental simplifier actually comes with a very novel weakest precondition calculus
that will be extended to all memory models and standard features of WP in a near future.
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